
252

Multi-level Security
in Database Management Systems

Patricia A. Dwyer, George D. Jelatis and
Bhavani M. Thuraisingham
Honeywell Compufer Scrences Center, 1000 Boone Avenue North,

Golden Valley, Minnesota 55427, USA

Multi-level secure database management system (MLS-DBMS)

security requirements are defined in terms of the view of the

database presented to users with different authorizations. These

security requirements are intended to be consistent with DOD

secure computing system requirements. An informal security

policy for a multi-level secure database management system is

outlined, and mechanisms are introduced that support the

policy. Security constraints are the mechanism for defining

classification rules, and query modification is the mechanism

for implementing the classification policy. These mechanisms

ensure that responses to users’ queries can be assigned classifi-

cations which will make them observable to the querying users.

Keywords: Database security, Database management systems,

Security policy, Security constraints, Query modification.

Patricia A. Dryer is a principal re-
search scientist at the Honeywell
Computer Sciences Center. Her re-
search interests include distributed
svstems. database systems. and sccur-
iiv. She is currently investigating
secure database management system
issues. and is participating in the dc-
sign, development, and application of
Honeywell’s Distributed Databaw
Testhed System (DDTS). She has also
investigated algorithms for transaction
and qucty optimization using the

testhed svatem. She previously worked at Philip Morris where
she invcsngated the use of computer modeling and simulation
in cigarette product design and development. Dwycr received
the B.S. degree in Chemistry from Northern Illinois University
in 1977, the M.S. degree in Chemistry from the University of
Minnesota in 1980, and the M.S. degree in Computer Science
from the University of Mlnncsota in 19X1. She is a member of
the ACM and the IEEE.

This effort has been supported by U.S. Government Contract
F30602-86-C-0003.

North-Holland

Computers & Security 6 (1987) 2522260

1. MLS- DBMS Security Requirements

A multi-level secure database management system
(MLS-DBMS) is different from a conventional DBMS

in at least three ways: (1) every data item in the
database has associated with it one of several
classifications or sensitivities, that may change
dynamically; (2) control of users’ access to data
must be based upon these classifications; and (3)
the classification based access controls cannot be
avoided or subverted, that is, they are mandatory.

In such a multi-level secure database system,
the critical factor which distinguishes one user

George D. .Jelatis is a senior principal
rcscarch scientist at the Honeywell
Computer Scicnccs Center. He is cur-
rently investigating secure database
management system issues. He has also
investigated local area network issues
ranging from protocol design. calida-
tion and evaluation, to communica-
tion architccturcs and application and
use of LANs in distributed computing
environments. He has also done re-
search in distributed computing and
participated in the design and irnplc-

mcntation of a distributed systems tcatbcd. He previously
worked at University of Minncaota Hospitals where he was
involved in computerized Electrocardiography and computer
networking. He earned a BS in Physics from the University of
Minnesota and is currently pursuing an MS in Computer
Science. He is a member. and past chairman of the IEEE
P802.4 Token-bus Working C;roup. and is a member of the
ACM and the IEEE.

Bhavani M. Thuraisingham is a prin-
cipal research scientist at the Honey-
well Computer Sciences Center and an
adjunct professor of computer science
at the University of Minnesota. Her
research interests include database
security, distributed processing, and
applications of logic and recursion
theory in computer science. Previously
she worked at Control Data designing
and developing computer networks,
and was also a member of faculty at
the Department of Computer Science,

New Mexico Tech. and at the Department of Mathematics.
University of Minnesota. Thuraisingham received a B.S. degree
in Mathematics and Physics from the University of Sri-Lanka,
M.S. degree in Mathematical Logic from the University of
Bristol U.K., and Ph.D. degree in Theory of Computation
from University of Wales U.K. in 1975, 1977 and 1979 respec-
tively. She also has an MS. in computer science from the
University of Minnesota. She is a member of ACM and IEEE.

0167-4048/87/$3.50 @> 1987, Elsevier Science Publishers B.V. (North-Holland)

from another is that each is authorized to access
only particular sub-sets of the data within the
DBMS. An MLS-DBMS addresses the rather natural
expectation that users at different levels should be
able to use the same database, with each seeing
only that data for which s/he has appropriate
authorization, and users with different authoriza-
tions sharing some data.

Although there have been several attempts at
designing a general purpose MLS-DBMS [3,7], the
problems encountered in designing and building
such a system are quite difficult, and have not yet

been overcome
It is only recently and with considerable diffi-

culty that the simpler case, that of providing
multi-level security for operating systems and for
their associated resources, has been solved. Such a
multi-level computing system is generally referred
to as a trusted computer base (TCB) [6] within the
computer security community. The TCB generally
controls the access of user processes to system
resources, at the file or device granularity, accord-
ing to security classification levels.

Providing a multi-level secure DBMS service on
CUrrent COmpUting SyStemS, even on a TCB, pre-
sents a new set of problems. The most obvious of
these problems is that the granularity of classifica-
tion in a useful DBMS will generally be much finer
than a file, and may be as fine as single data
elements within a record. It is not, however, suffi-
cient to classify data statically as it is stored in the
database, using only fixed labels or structural
information to determine the data’s classification
on access. It must also be possible to classify the
results of database queries based upon individual
data values (the content of the data returned),
particular combinations of data elements or values
(the context in which data is presented) or the
potential for inference, on the user’s part, of
unauthorized information from otherwise author-
ized data returned.

There are two fairly direct, known approaches
to this MLS-DBMS problem, each of which has
serious drawbacks. The first of these is that a
“Trusted” DBMS development could be under-
taken; this would require formal verification of all
DBMS software which is probably an extremely
difficult and costly effort. The second approach is
that an untrusted DBMS could be hosted on an
existing TCB; this would rely upon the TCB'S exist-
ing security mechanisms for DBMS security which

is likely to result in an operationally complex and
inconvenient system, probably with rather poor
performance. This second approach may also in-
volve such compromises as duplication of parts of
the database (resulting in consistency problems
and storage of large amounts of redundant data)
or extremely awkward access control techniques.

The MLS-DMS design approach we will discuss
here is a hybrid of sorts, in that it will require
formal verification of limited portions of the DBMS
software, and will rely heavily upon the security
enforcement mechanisms of a new TCB, the
Honeywell Secure Ada Target (SAT) [2].

Our approach uses security constraints as the
mechanism for defining classification rules, and
query modification as the mechanism for imple-
menting the classification policy. Using these
mechanisms, the MLS-DBMS can ensure that
responses to users’ queries are classified so that
they are observable to the users.

This approach will allow users who are cleared
at different levels to share a single, integrated,
multi-level database. It also eliminates the risk of
direct disclosure of data to users who should not
see it, protects against direct Trojan Horse attacks
and will attempt to limit the information a user

can gain through inference and covert channel
attacks. Since our design encapsulates the entire
DBMS within a special, restricted access-domain, it
should be possible to base the system on a conven-
tional, univerified database manager of which some
small components or modules may need to be
trusted and/or verified. This approach should also
provide a foundation upon which more sophisti-
cated inference control mechanisms could be built.

2. Related Work

The MLS-DBMS security techniques we will describe
in the following sections have strong antecedents
in conventional DBMS technology. Specifically, the
techniques of query modification, constraints,
views and access restrictions have all been applied
to other database problems in the past. This sec-
tion discusses each of these techniques in their
original application, in order to put their use in
later sections into perspective.

Query modification was used in the INGRES

relational DBMS [lo] to implement integrity con-
straints, views [9] and discretionary access control

[8]. The QUEL query language was used to specify
these integrity constraints, views and access con-
trol restrictions. When users entered QUEL data
retrieval or update requests, the DBMS would mod-
ify each request, based upon the QUEL constraints,
and then apply the modified request to the data-
base.

Integrity constraints are enforced by modifying
every update request into a new update request
that is guaranteed not to change the data in ways
which would violate those integrity constraints.
Similarly, all retrieval and update requests against
views are modified into new requests against the
base relations. Discretionary access control con-
straints are enforced by modifying all requests
into new requests which contain no access viola-
tions; note that no further access violation check-
ing is done.

Our approach uses query modification to en-
force mandatory access controls, specified by
means of constraints, on every database access
request. It also goes beyond simply modifying the
query, in that all data returned is checked for
access violations, using TCB type enforcement
mechanisms, before being released to the user.

3. Basic Assumptions

In order to restrict the scope of the security re-
lated design problem, we have made a number of
assumptions about the MLS-DBMS environment and
operation. These assumptions and their conse-
quences are discussed in this section. (The rela-
tional data model is discussed briefly in the next
section.)

We have assumed that both the database and
its access language conform to the relational model
of data [4]. This provides us with a well defined,
regular language for defining the database struc-
ture and operations.

We have assumed that it is necessary to provide
data classification at a fine granularity; that is, at
the tuple, attribute or even element level. We have
also assumed that the results of functions applied
to sets of data may need to be classified indepen-
dently of the data itself. Further, we have assumed
that the classification of data may be required to
change, dynamically, over time.

We have assumed that besides simply classify-
ing each (arbitrary) unit of data, it will be neces-

sary to classify data depending upon its value or
content, and also the context in which it is seen.
This need generalizes into the need to control the
user’s inference of more sensitive information from
less sensitive information.

Finally, we have assumed that it is more expen-
sive to verify that all of the DBMS software satisfies
the security requirements, than it is to encapsulate
the DBMS and provide verified software which
filters all incoming requests and correctly classifies
all outgoing results.

4. Relational Database Definitions

The MLS-DBMS uses the relational data model and
a query language based upon the relational alge-
bra [4]. In a relational database, the data may be
thought of as being structured into tables (Fig. 1).
The columns of a relation are referred to as attri-
butes. The degree of a relation is the number of
attributes defined for that relation. The rows of a

particular relation (table) are referred to as tuples.
The cardinality of a relation is just the number of
(unordered) tuples it contains. In a particular tu-

ple, the field which corresponds to a particular
attribute may contain any one of the values in the
domain of that attribute. For an introduction to
these relational database concepts see [5]. For a
more theoretical discussion of the relational model
and the relational algebra, see [ll].

4.1 Relational Algebra Operators

The operators of relational algebra act on oper-
ands which are relations of a fixed degree. There
are five basic operators that serve to define rela-
tional algebra: selection, projection, union, set dif-
ference and Cartesian-product. Two other com-
monly used operators, intersection and join, can
be derived from them [ll]. These seven operators
are shown in Fig. 2 and described below.

The five basic relational operators are:
1. Selection. The selection operator constructs a

horizontal subset of a relation. The result of
the selection operation is the subset of tuples
within a relation, R, for which a specified
predicate, P, is true.

2. Projection. The projection operator constructs
a vertical subset of a relation. The result of the
projection operation is the subset of R ob-

Attributes:

wafa-s: f+

Al Ai Ak

Tuple X

Tuple Y

w

DegreeofR, isthevafueof~

Rn

. . .

I -

Cardinality of Rl

Fig. 1. Relational Database definitions.

Selection SL [P]
Projection PJ [A]
Union RUN S
Set Difference R DFS
Cartesian Product R CP S

Intersection RINS
Join RJN[jp]S

Fig. 2. Relational algebra operators

tained by selecting specified attributes (A), and
eliminating others (and also eliminating dupli-
cate tuples within the attributes selected).
Union. The union of two relations of the same
degree, R and S, is the set of tuples that are in
R or S or both.
Set difference. The difference of two relations
of the same degree, R and S, is the set of
tuples in R but not in S.
Cartesian product. The Cartesian product of two

Fig. 3. Example relations R(a, b, c) and S(d, e), a. d are keys; c,
d have same domain for join.

relations of degree m and n, R and S, is the
set of (m x n)-tuples whose first m attributes
form a tuple in R and whose last n attributes

form a tuple in S.
Two additional, commonly used relational op-

erators are:
6. Intersection. The intersection of two relations

of the same degree, R and S, is the set of
tuples in both R and S.

7. Join. The join of R and S is those tuples in the
Cartesian product of R and S for which a
specified join predicate, jp, is true.

4.2 A Relational Database Example

The two relations in Fig. 3 comprise a small
sample database which will be used in the subse-
quent sections to illustrate the operation of query
modification.

5. MLS-DBMS hfonnd Security Policy

The result of a user’s query against a relational
database is always a relation. Since the database
contains data which is classified at various levels,
the result relation could contain data items with
several different classifications; this is a multi-level
response. If security policy enforcement measures
were not taken, some of the data in this result
relation might not be classified at or below the
user’s clearance level. Our security policy can be

stated most simply in terms of the difference
between the result relations, returned in response
to a query, for a non-secure DBMS and a secure
DBMS. The non-secure DBMS simply returns all
tuples satisfying the query. The multi-level secure
DBMS returns only those complete tuples which are
classified at or below the user’s level, thus all
tuples that contain one or more elements above
the querying user’s level are eliminated from the
secure DBMS'S results.

Our policy can be described in terms of classifi-
cation rules and a classification policy. The classi-
fication rules are used to associate classification
levels with all data in the database, and the classi-
fication policy determines the result of a user’s
query for a user at a particular security level.
Security constraints are the mechanism for defi-
ning classification rules, and query modification is
the mechanism for implementing the classification
policy. These mechanisms are discussed in the
following two sections.

6. Security Constraints

Security constraints are used in our approach to
associate classification levels with all data in the
relational database. They provide the basis for a
versatile, powerful classification policy because
any subset of data can be specified and assigned a
level statically or dynamically.

Simple constraints allow for classification of an
entire database, as well as classifying by relation
or by attribute. Constraints that classify by con-
tent provide the mechanism for classification by
tuple and by element. Constraints that classify by
context are the mechanism for classifying relation-
ships between data. Any subset of the database
can be classified based upon content or context.
In addition, the results of applying functions to an
attribute or a subset of an attribute, for example,
sum, average, and count, can be assigned different
classification levels than the underlying data. Fi-
nally, the classification levels of the data can
change dynamically based upon changes in time,
content, or context.

It is important to note that “simple” and “con-
tent” based constraints can be applied to data as
it is actually stored in the database, while “con-
text,” “ functional,” and “dynamically” based con-
straints can only be applied in the computation of

the result relation which is to be output in re-
sponse to a user’s query.

A constraint consists of a data specification
and a classification. The data specification defines
any subset of the database using the relational
algebra and the classification defines its classifica-
tion level. A constraint has the following standard
form:

Ql(~Jk+. l~~~Pl@I op

(4 op . . . MI))
= classification level

where

R, (1 < = i < = n) is either a base relation or an

expression in the standard form;

f, is either null, average, sum, count, max,

or min;

a,, is the jth attribute of R,;

P is either TRUE or a predicate of the attributes

of R ,,..., R,; and

OP is either CP, UN, DF, JN [jp], IN, or null.

Using the relational algebra, the data specifica-
tion can define any subset of the database. How-
ever, in practice a limited number of types of data
specifications will actually be used. The following
examples illustrate classification policies for a re-
lational database and the constraints that must
exist to support them.

Each set of examples consists of an abstract
and a concrete example. The abstract example is
based on the following database:

&(a,,>..., a,,),

&(a,,,..., uzk). . .

&(a nl,“., a,,)

In this database description R, is the i-th relation
and (I,, is the j-th attribute of R,.
The concrete example is based on the database in
Fig. 3.
Each example presents an informal, English lan-
guage definition of a classification rule (on the
left) paired with the relational algebra constraints
(on the right) needed to implement or enforce that
rule through query modification.

The constraints in the example are a subset of

P.A. Dwyer et al. / Multi-level security in Database Management Systems 257

the standard form given above:

qf,(w+.. l(SL[Pl(RIJN[~ Ik = a,,](R,JN[jp] . . .)))) j = classification level

The first set of constraints define classification levels for the entire database.

la. database classified T.S.
(all data in the entire database
is classified T.S. - equivalent to
a T.S. label on each element
in database)

L(PJ[a,JR,) = T.S.
for all i, j

lb. database is classified T.S. L(PJ[a]R) = T.S.
L(PJ[b]R) = T.S.
L(PJ[c]R) = T.S.

L(PJ[d]S) = T.S.
L(PJ[e]S) = T.S.

The next set of constraints define classification levels for a relation.

2a. relation R, classified T.S.
(all data in the entire relation
is classified T.S. - equivalent to
a T.S. label on each element in
relation)

L(PJ[aij]R,) = T.S.
for some i

for all j

2b. R is classified T.S. i(PJ[u]R) = T.S.
L(PJ[b]R) = T.S.
L(PJ[c]R) = T.S.

The next set of constraints define classification levels for an attribute.

3a. attribute ui, classified T.S.
(all data in the entire attribute
is classified T.S. - equivalent to
a T.S. label on each element in
attribute)

L(PJ[uii]Ri) = T.S.
for some i

for some j

3b. a is classified T.S. L(PJ[u]R) = T.S.

The next two sets of constraints illustrate classification by context. The first set define classification levels
for 2 attributes in the same relation by using the PJ[A] operator.

4a. relationship between attributes
in the same relation classified T.S.
(they are classified T.S. when read
together, but not necessarily when
read individually)

L(PJ[u ,,,. ..]Ri) = T.S.
for some i

for 2 or more j’s

4b. relationship between a and b is
classified, i.e. that 10, 22,
and 18 are Green and 17 and 25
are Purple is classified T.S.

L(PJ[u, b]R) = T.S.

The second set define classification levels for 2 attributes in different relations by using the PJ[A] and
JN [jp] operators.

5a.

5b.

relationship between attributes
in different relations
classified T.S.

relationship between u and e
is classified T.S.

L(H[u,,, . .](R,JN[jp]...))=T.S.
for 2 or more i’s
for 1 or more j’s

L(PJ[a, e](R JN[c = d] S)) = T.S.

The next two sets of constraints illustrate classification by content. The first set defines classification levels
for all attributes in a relation that satisfies a particular predicate by using the SL[P] operator.

6a. tuples classified T.S. L(PJ[a,,](SL[P]R,)) = T.S.
(all data in the tuples for some i
is classified T.S.) for all j

6b. everything when h = Purple is L(PJ[a](SL[h = Purple]R)) = T.S.

classified T.S. L(PJ[b](SL[b = Purple]R)) = T.S.
L(PJ[c](SL[b = Purple]R)) = T.S.

The second set define classification levels for a single attribute in a relation that satisfies a particular
predicate by using the SL[P] operator.

7a. elements classified T.S. L(PJ[a,,](SL[P]R,)) = T.S.
for some i
for some j

7b. c when b = Purple is classified
T.S.

L(PJ[c](SL[b = Purple]R)) = T.S.

The next set of constraints illustrate the classification of a function of an attribute.

8a. function of an attribute KW’Jb,,lfU = T.S.
classified T.S. for some i

.f = average, count, sum, max, mm for some j

8b. average of c is classified T.S. L(average(PJ[c] R)) = T.S.

The operators can be combined to provide a very flexible classification policy. The following set of
constraints combine classification by context and content.

9a.

9b.

relationship between elements

in different relations
classified T.S.

relationship between a and e
when b = Purple
is classified T.S.

L(RJ]Q . ..](SL[P](R.JN[jp]...])))=T.S.
for 2 or more i’s
for 1 or more j’s

L(PJ[a, e](SL[b = Purple](R JN[c = d] S))) = T.S.

Note that query modification prevents one individual query from violating a constraint, but on multiple
queries. Enforcing constraints across multiple queries would require use of a history file or equivalent
mechanism. Such a mechanism would enable the DBMS to treat a single query in the context of all previous
queries made by a given user.

Example :
Consider constraint number 5b:

L(PJ[a, e](R JN[c=d] S))=T.S.

Suppose the user makes the following two queries:

1. P.&z, c]R

2. PJ[d, e]S

These are equivalent to the single query:

3. PJ[a, e](RJN[c=d] S),

which would have been rejected by query modifi-
cation due to constraint 5b. The first 2 queries are
equivalent to the 3rd query, because the foreign
key in relation R (c) is displayed in the 1st query,

P.A. Dwyer et al. / Multi-he1 security in Database Management Systems 259

and the key of relation S(d) is displayed in the
2nd query. The user can compute the result of the
join between R and S manually, and thus dis-
cover the relationship between attributes a and e.

7. Query Modification

Query modification is the mechanism for support-
ing the classification policy. The user’s query is
first modified according to the security constraints
so that the response can be assigned a classifica-
tion which will make it observable to the user. The
modified query is then compiled and executed. We
will first state the essential points in the query
modification algorithm briefly, and then describe
this algorithm in greater detail.

When a user poses a query, this query is mod-
ified as follows: Select those constraints from the
set of all constraints, which have classified at least
one attribute with a classification level not less
than or equal to that of the user. Then modify the
query by applying these selected constraints in
such a way that when the modified query is posed,
only the information in the database which is

classified at an equal or lower level than that of

the user is returned.
In the algorithm we will only consider a subset

of the queries in the standard form given in the
previous section. The queries in this subset are of
the form:

where E is either a base relation or a relation
derived from base relations using the operators
CP, UN, and DF. The essential points of the
argument can be clearly exhibited by considering
this subset of queries, and we can extend our
argument to include all types of queries.

Most common and useful queries belong to this
subset. For example, it can be shown by induction
on the number of operators that any query which
uses only the operators PJ, SL, JN, and CP

belongs to this subset.
Before we state the algorithm, we will clarify

the special terms that we have used. By an “empty
query’ is meant a non-existent query. By the
‘qualification in a query or a constraint’ is meant
the condition specified in the ‘where’ clause in the
operation SL.

The algorithm proceeds in stages:

STAGE 1: SELECT THE CONSTRAINTS RELEVANT TO THE QUERY

Let C,, C,, C,,. , C, (n 2 1) be the constraints where for each i

(1~ i G n) the level assigned in C, is denoted by L(C,). Assume that

the classification levels form a lattice where ‘ Q ’ is the

partial ordering. Therefore, for any two levels f., and L,, either L, AND

L, are incomparable, L, < L,, or L, > L,.

Let Q be the query posed by a user whose clearance is L. Let the

qualification in the query be G. Note that G may be NULL. Let the

attributes used in the qualification be B,, B,, B, and those used in

the result be A,, A,. . A,,,. Let (P,, PI,.. ., Pr) (r > 1) be the largest

subset of {C,, C,, , C,) satisfying the following conditions:

1. L(P,)not ~Lwherelgigr.

2. For each i(1 4 i < r), the set of attributes classified in P, is a

subset of {A,, A, ,... A,,,, B,, B, .._. B,).

P,, Pz,... P, are the constraints relevant to the query. Let the
qualification associated with each P, be F, (1~ I < r). Note that E;

may be NULL.

STAGE 2. TRANSFORM THE QUERY Q TO Q *
CONTINUE := TRUE; INDEX := 1;

WHILE (INDEX < r AND CONTINUE) DO

Consider constraint P,.

IF F, is NULL, i.e. the constraint has no qualification, THEN
Q* is the empty query.

CONTINUE := FALSE;

ELSE

Consider the expression (C AND (NOT(c)).
IF this expression results in a CONTRADICTION, i.e. it consists

of a subformula of the form (A AND (NOT A)) THEN

Set Q* to be the empty query.

CONTINUE := FALSE;

260 P.A. Dwyer et al. / Multi-level security in Database Management Systems

ELSE

Let R, and R, be the relations to which a select is applied in the query Q and the constraint P, respectively.

Set R = R, CP R,

Let K be the condition that is used to JOIN R, and R, over

common attributes, i.e. R,JP[K]R, = SL[K#R,CPR,)

The new query Q is obtained from the old query Q be substituting R for R, and (G AND K AND (NOT(c))) for the

qualification G,

i.e. R, := R; G := G AND K AND (NOT(4))

IF INDEX = t THEN

CONTINUE := FALSE;
Q* :=Q;

ELSE

INDEX := INDEX + 1;

ENDIF;

ENDIF;

ENDIF;

ENDWHILE;

We will now trace this algorithm with an exam-
ple. Consider the relations R and S defined in
Fig. 3. Let the constraints enforced be

L(PJ[a](SL[a=22]R)) =T.S.

L(PJ[b](SL[a=22]R))=T.S.

L(PJ[c](SL[a=22]R))=T.S.

Suppose an unclassified user wants to obtain the
colors and cities when a = 22. The user will pose
the following query:

We are currently in the process of investigating
how the mechanisms of the SAT TCB could be
utilized to minimize the amount of code that has
to be verified within the DBMS based on the query
modification process, extending our approach to
include updates, analyzing mechanisms for in-
ference control, and analyzing covert channels.

References

fll

PJ[h, e](SL[u=22](RJN[c=d] S)) PI

This query is equivalent to the following query:

PJ[b, e](SL[u=22AND c=d](R CPS))

It can be seen that the constraints are relevant.

[31

[41

The expression (G AND NOT(4)) in stage 3
of the algorithm is (a = 22 AND c = d AND
NOT(u = 22)). This results in a contradiction.

Therefore the query is modified to the empty
query and no information is returned to the user.

[51

[61

[71

8. Conclusion and Future Work

PI
We have presented a unique approach for defining
classification rules and enforcing a classification
policy that ensures that the response to a user’s
query against a multi-level secure database can be
assigned a classification which will make the re-
sponse observable to the querying user. This ap-
proach consists of the modification of a user’s
query based on the security constraints and the
application of the modified query to the database.
We have also devised an algorithm which success-
fully implements this query modification process.

[91

[lOI

Pll

D.E. Bell, and L.J. LaPadula: Secure Computer System:

Unified Exposition and Multics Interpretation, MITRE

Technical Report MTR-2997, July, 1975.

W.E. Boebert, W.D. Young, R.Y. Kain, and S.A. Hansohn:

Secure Ada Target: Issues, System Design and Verification,

1985 IEEE Symposium on Security and Privacy, Oakland,

CA, April 22-24, 1985, pp. 176-183.
D. Bonyun et al.: A Model of a Protected Data Manage-

ment System, I.P. Sharp Report ESD-TR-76-289, 1976.

E.F. Codd: A Relational Model of Data for Large Shared

Data Banks, Communications of the ACM, Vol. 13, NO. 6,

June, 1970, pp. 377-387.

C.J. Date: An Introduction to Database Sysrems,

Addison-Wesley Publishing Company, 1977.

DOD Computer Security Center: Department of Defense

Trusted Computer System Evaluation Criteria, CSC-STD-

001-83, August 15, 1983.
T.H. Hinke, and M. Schaefer: Secure Data Management

@stem, Rome Air Development Center Report RADC-

TR-266, November, 1975.

M. Stonebraker, and E. Wong: Access Control in a Rela-

tional Data Base Management System By Query Modifi-

cation, ACM National Conference Proceedings, 1974, pp.

180-186.
M. Stonebraker: Implementation of Integrity Constraints
and Views by Query Modification, ACM SIGMOD Inter-

national Symposium on Management of Data, 1975, pp.

65-78.

M. Stonebraker, E. Wong, and P. Kreps: The Design and

Implementation of INGRES, ACM Transactions on

Database Systems, Vol. 1, No. 3. September, 1976, pp.

1899222.
J.D. Ullman: Principles of Database Systems, Computer

Science Press, 1982.

