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Multi-level secure database management system (MLS-DBMS) 

security requirements are defined in terms of the view of the 

database presented to users with different authorizations. These 

security requirements are intended to be consistent with DOD 

secure computing system requirements. An informal security 

policy for a multi-level secure database management system is 

outlined, and mechanisms are introduced that support the 

policy. Security constraints are the mechanism for defining 

classification rules, and query modification is the mechanism 

for implementing the classification policy. These mechanisms 

ensure that responses to users’ queries can be assigned classifi- 

cations which will make them observable to the querying users. 
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1. MLS- DBMS Security Requirements 

A multi-level secure database management system 
(MLS-DBMS) is different from a conventional DBMS 

in at least three ways: (1) every data item in the 
database has associated with it one of several 
classifications or sensitivities, that may change 
dynamically; (2) control of users’ access to data 
must be based upon these classifications; and (3) 
the classification based access controls cannot be 
avoided or subverted, that is, they are mandatory. 

In such a multi-level secure database system, 
the critical factor which distinguishes one user 
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from another is that each is authorized to access 
only particular sub-sets of the data within the 
DBMS. An MLS-DBMS addresses the rather natural 
expectation that users at different levels should be 
able to use the same database, with each seeing 
only that data for which s/he has appropriate 
authorization, and users with different authoriza- 
tions sharing some data. 

Although there have been several attempts at 
designing a general purpose MLS-DBMS [3,7], the 
problems encountered in designing and building 
such a system are quite difficult, and have not yet 

been overcome 
It is only recently and with considerable diffi- 

culty that the simpler case, that of providing 
multi-level security for operating systems and for 
their associated resources, has been solved. Such a 
multi-level computing system is generally referred 
to as a trusted computer base (TCB) [6] within the 
computer security community. The TCB generally 
controls the access of user processes to system 
resources, at the file or device granularity, accord- 
ing to security classification levels. 

Providing a multi-level secure DBMS service on 
CUrrent COmpUting SyStemS, even on a TCB, pre- 
sents a new set of problems. The most obvious of 
these problems is that the granularity of classifica- 
tion in a useful DBMS will generally be much finer 
than a file, and may be as fine as single data 
elements within a record. It is not, however, suffi- 
cient to classify data statically as it is stored in the 
database, using only fixed labels or structural 
information to determine the data’s classification 
on access. It must also be possible to classify the 
results of database queries based upon individual 
data values (the content of the data returned), 
particular combinations of data elements or values 
(the context in which data is presented) or the 
potential for inference, on the user’s part, of 
unauthorized information from otherwise author- 
ized data returned. 

There are two fairly direct, known approaches 
to this MLS-DBMS problem, each of which has 
serious drawbacks. The first of these is that a 
“Trusted” DBMS development could be under- 
taken; this would require formal verification of all 
DBMS software which is probably an extremely 
difficult and costly effort. The second approach is 
that an untrusted DBMS could be hosted on an 
existing TCB; this would rely upon the TCB'S exist- 
ing security mechanisms for DBMS security which 

is likely to result in an operationally complex and 
inconvenient system, probably with rather poor 
performance. This second approach may also in- 
volve such compromises as duplication of parts of 
the database (resulting in consistency problems 
and storage of large amounts of redundant data) 
or extremely awkward access control techniques. 

The MLS-DMS design approach we will discuss 
here is a hybrid of sorts, in that it will require 
formal verification of limited portions of the DBMS 
software, and will rely heavily upon the security 
enforcement mechanisms of a new TCB, the 
Honeywell Secure Ada Target (SAT) [2]. 

Our approach uses security constraints as the 
mechanism for defining classification rules, and 
query modification as the mechanism for imple- 
menting the classification policy. Using these 
mechanisms, the MLS-DBMS can ensure that 
responses to users’ queries are classified so that 
they are observable to the users. 

This approach will allow users who are cleared 
at different levels to share a single, integrated, 
multi-level database. It also eliminates the risk of 
direct disclosure of data to users who should not 
see it, protects against direct Trojan Horse attacks 
and will attempt to limit the information a user 

can gain through inference and covert channel 
attacks. Since our design encapsulates the entire 
DBMS within a special, restricted access-domain, it 
should be possible to base the system on a conven- 
tional, univerified database manager of which some 
small components or modules may need to be 
trusted and/or verified. This approach should also 
provide a foundation upon which more sophisti- 
cated inference control mechanisms could be built. 

2. Related Work 

The MLS-DBMS security techniques we will describe 
in the following sections have strong antecedents 
in conventional DBMS technology. Specifically, the 
techniques of query modification, constraints, 
views and access restrictions have all been applied 
to other database problems in the past. This sec- 
tion discusses each of these techniques in their 
original application, in order to put their use in 
later sections into perspective. 

Query modification was used in the INGRES 

relational DBMS [lo] to implement integrity con- 
straints, views [9] and discretionary access control 



[8]. The QUEL query language was used to specify 
these integrity constraints, views and access con- 
trol restrictions. When users entered QUEL data 
retrieval or update requests, the DBMS would mod- 
ify each request, based upon the QUEL constraints, 
and then apply the modified request to the data- 
base. 

Integrity constraints are enforced by modifying 
every update request into a new update request 
that is guaranteed not to change the data in ways 
which would violate those integrity constraints. 
Similarly, all retrieval and update requests against 
views are modified into new requests against the 
base relations. Discretionary access control con- 
straints are enforced by modifying all requests 
into new requests which contain no access viola- 
tions; note that no further access violation check- 
ing is done. 

Our approach uses query modification to en- 
force mandatory access controls, specified by 
means of constraints, on every database access 
request. It also goes beyond simply modifying the 
query, in that all data returned is checked for 
access violations, using TCB type enforcement 
mechanisms, before being released to the user. 

3. Basic Assumptions 

In order to restrict the scope of the security re- 
lated design problem, we have made a number of 
assumptions about the MLS-DBMS environment and 
operation. These assumptions and their conse- 
quences are discussed in this section. (The rela- 
tional data model is discussed briefly in the next 
section.) 

We have assumed that both the database and 
its access language conform to the relational model 
of data [4]. This provides us with a well defined, 
regular language for defining the database struc- 
ture and operations. 

We have assumed that it is necessary to provide 
data classification at a fine granularity; that is, at 
the tuple, attribute or even element level. We have 
also assumed that the results of functions applied 
to sets of data may need to be classified indepen- 
dently of the data itself. Further, we have assumed 
that the classification of data may be required to 
change, dynamically, over time. 

We have assumed that besides simply classify- 
ing each (arbitrary) unit of data, it will be neces- 

sary to classify data depending upon its value or 
content, and also the context in which it is seen. 
This need generalizes into the need to control the 
user’s inference of more sensitive information from 
less sensitive information. 

Finally, we have assumed that it is more expen- 
sive to verify that all of the DBMS software satisfies 
the security requirements, than it is to encapsulate 
the DBMS and provide verified software which 
filters all incoming requests and correctly classifies 
all outgoing results. 

4. Relational Database Definitions 

The MLS-DBMS uses the relational data model and 
a query language based upon the relational alge- 
bra [4]. In a relational database, the data may be 
thought of as being structured into tables (Fig. 1). 
The columns of a relation are referred to as attri- 
butes. The degree of a relation is the number of 
attributes defined for that relation. The rows of a 

particular relation (table) are referred to as tuples. 
The cardinality of a relation is just the number of 
(unordered) tuples it contains. In a particular tu- 

ple, the field which corresponds to a particular 
attribute may contain any one of the values in the 
domain of that attribute. For an introduction to 
these relational database concepts see [5]. For a 
more theoretical discussion of the relational model 
and the relational algebra, see [ll]. 

4.1 Relational Algebra Operators 

The operators of relational algebra act on oper- 
ands which are relations of a fixed degree. There 
are five basic operators that serve to define rela- 
tional algebra: selection, projection, union, set dif- 
ference and Cartesian-product. Two other com- 
monly used operators, intersection and join, can 
be derived from them [ll]. These seven operators 
are shown in Fig. 2 and described below. 

The five basic relational operators are: 
1. Selection. The selection operator constructs a 

horizontal subset of a relation. The result of 
the selection operation is the subset of tuples 
within a relation, R, for which a specified 
predicate, P, is true. 

2. Projection. The projection operator constructs 
a vertical subset of a relation. The result of the 
projection operation is the subset of R ob- 
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Fig. 1. Relational Database definitions. 

Selection ......... SL [P] 
Projection ......... PJ [A] 
Union ........... RUN S 
Set Difference ....... R DFS 
Cartesian Product ..... R CP S 

Intersection ........ RINS 
Join ............ RJN[jp]S 

Fig. 2. Relational algebra operators 

tained by selecting specified attributes (A), and 
eliminating others (and also eliminating dupli- 
cate tuples within the attributes selected). 
Union. The union of two relations of the same 
degree, R and S, is the set of tuples that are in 
R or S or both. 
Set difference. The difference of two relations 
of the same degree, R and S, is the set of 
tuples in R but not in S. 
Cartesian product. The Cartesian product of two 

Fig. 3. Example relations R(a, b, c) and S(d, e), a. d are keys; c, 
d have same domain for join. 

relations of degree m and n, R and S, is the 
set of (m x n)-tuples whose first m attributes 
form a tuple in R and whose last n attributes 

form a tuple in S. 
Two additional, commonly used relational op- 

erators are: 
6. Intersection. The intersection of two relations 

of the same degree, R and S, is the set of 
tuples in both R and S. 

7. Join. The join of R and S is those tuples in the 
Cartesian product of R and S for which a 
specified join predicate, jp, is true. 

4.2 A Relational Database Example 

The two relations in Fig. 3 comprise a small 
sample database which will be used in the subse- 
quent sections to illustrate the operation of query 
modification. 

5. MLS-DBMS hfonnd Security Policy 

The result of a user’s query against a relational 
database is always a relation. Since the database 
contains data which is classified at various levels, 
the result relation could contain data items with 
several different classifications; this is a multi-level 
response. If security policy enforcement measures 
were not taken, some of the data in this result 
relation might not be classified at or below the 
user’s clearance level. Our security policy can be 



stated most simply in terms of the difference 
between the result relations, returned in response 
to a query, for a non-secure DBMS and a secure 
DBMS. The non-secure DBMS simply returns all 
tuples satisfying the query. The multi-level secure 
DBMS returns only those complete tuples which are 
classified at or below the user’s level, thus all 
tuples that contain one or more elements above 
the querying user’s level are eliminated from the 
secure DBMS'S results. 

Our policy can be described in terms of classifi- 
cation rules and a classification policy. The classi- 
fication rules are used to associate classification 
levels with all data in the database, and the classi- 
fication policy determines the result of a user’s 
query for a user at a particular security level. 
Security constraints are the mechanism for defi- 
ning classification rules, and query modification is 
the mechanism for implementing the classification 
policy. These mechanisms are discussed in the 
following two sections. 

6. Security Constraints 

Security constraints are used in our approach to 
associate classification levels with all data in the 
relational database. They provide the basis for a 
versatile, powerful classification policy because 
any subset of data can be specified and assigned a 
level statically or dynamically. 

Simple constraints allow for classification of an 
entire database, as well as classifying by relation 
or by attribute. Constraints that classify by con- 
tent provide the mechanism for classification by 
tuple and by element. Constraints that classify by 
context are the mechanism for classifying relation- 
ships between data. Any subset of the database 
can be classified based upon content or context. 
In addition, the results of applying functions to an 
attribute or a subset of an attribute, for example, 
sum, average, and count, can be assigned different 
classification levels than the underlying data. Fi- 
nally, the classification levels of the data can 
change dynamically based upon changes in time, 
content, or context. 

It is important to note that “simple” and “con- 
tent” based constraints can be applied to data as 
it is actually stored in the database, while “con- 
text,” “ functional,” and “dynamically” based con- 
straints can only be applied in the computation of 

the result relation which is to be output in re- 
sponse to a user’s query. 

A constraint consists of a data specification 
and a classification. The data specification defines 
any subset of the database using the relational 
algebra and the classification defines its classifica- 
tion level. A constraint has the following standard 
form: 

Ql(~Jk+. l~~~Pl@I op 

(4 op . . . MI)) 
= classification level 

where 

R, (1 < = i < = n ) is either a base relation or an 

expression in the standard form; 

f, is either null, average, sum, count, max, 

or min; 

a,, is the jth attribute of R,; 

P is either TRUE or a predicate of the attributes 

of R ,,..., R,; and 

OP is either CP, UN, DF, JN [ jp], IN, or null. 

Using the relational algebra, the data specifica- 
tion can define any subset of the database. How- 
ever, in practice a limited number of types of data 
specifications will actually be used. The following 
examples illustrate classification policies for a re- 
lational database and the constraints that must 
exist to support them. 

Each set of examples consists of an abstract 
and a concrete example. The abstract example is 
based on the following database: 

&(a,,>..., a,,), 

&(a,,,..., uzk). . . 

&(a nl,“., a,,) 

In this database description R, is the i-th relation 
and (I,, is the j-th attribute of R,. 
The concrete example is based on the database in 
Fig. 3. 
Each example presents an informal, English lan- 
guage definition of a classification rule (on the 
left) paired with the relational algebra constraints 
(on the right) needed to implement or enforce that 
rule through query modification. 

The constraints in the example are a subset of 
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the standard form given above: 

qf,(w+.. l(SL[Pl(RIJN[~ Ik = a,,]( R,JN[ jp] . . .)))) j = classification level 

The first set of constraints define classification levels for the entire database. 

la. database classified T.S. 
(all data in the entire database 
is classified T.S. - equivalent to 
a T.S. label on each element 
in database) 

L(PJ[a,JR,) = T.S. 
for all i, j 

lb. database is classified T.S. L(PJ[a]R) = T.S. 
L(PJ[b]R) = T.S. 
L(PJ[c]R) = T.S. 

L(PJ[d]S) = T.S. 
L(PJ[e]S) = T.S. 

The next set of constraints define classification levels for a relation. 

2a. relation R, classified T.S. 
(all data in the entire relation 
is classified T.S. - equivalent to 
a T.S. label on each element in 
relation) 

L( PJ[ aij]R,) = T.S. 
for some i 

for all j 

2b. R is classified T.S. i(PJ[u]R) = T.S. 
L(PJ[b]R) = T.S. 
L(PJ[c]R) = T.S. 

The next set of constraints define classification levels for an attribute. 

3a. attribute ui, classified T.S. 
(all data in the entire attribute 
is classified T.S. - equivalent to 
a T.S. label on each element in 
attribute) 

L(PJ[uii]Ri) = T.S. 
for some i 

for some j 

3b. a is classified T.S. L(PJ[u]R) = T.S. 

The next two sets of constraints illustrate classification by context. The first set define classification levels 
for 2 attributes in the same relation by using the PJ[A] operator. 

4a. relationship between attributes 
in the same relation classified T.S. 
(they are classified T.S. when read 
together, but not necessarily when 
read individually) 

L(PJ[u ,,,. ..]Ri) = T.S. 
for some i 

for 2 or more j’s 

4b. relationship between a and b is 
classified, i.e. that 10, 22, 
and 18 are Green and 17 and 25 
are Purple is classified T.S. 

L(PJ[u, b]R) = T.S. 

The second set define classification levels for 2 attributes in different relations by using the PJ[A] and 
JN [ jp] operators. 



5a. 

5b. 

relationship between attributes 
in different relations 
classified T.S. 

relationship between u and e 
is classified T.S. 

L(H[u,,, . . ](R,JN[jp]...))=T.S. 
for 2 or more i’s 
for 1 or more j’s 

L(PJ[a, e](R JN[c = d] S)) = T.S. 

The next two sets of constraints illustrate classification by content. The first set defines classification levels 
for all attributes in a relation that satisfies a particular predicate by using the SL[P] operator. 

6a. tuples classified T.S. L(PJ[a,,](SL[P]R,)) = T.S. 
(all data in the tuples for some i 
is classified T.S.) for all j 

6b. everything when h = Purple is L(PJ[a](SL[h = Purple]R)) = T.S. 

classified T.S. L(PJ[b](SL[b = Purple]R)) = T.S. 
L(PJ[c](SL[b = Purple]R)) = T.S. 

The second set define classification levels for a single attribute in a relation that satisfies a particular 
predicate by using the SL[P] operator. 

7a. elements classified T.S. L(PJ[a,,](SL[P]R,)) = T.S. 
for some i 
for some j 

7b. c when b = Purple is classified 
T.S. 

L(PJ[c](SL[b = Purple]R)) = T.S. 

The next set of constraints illustrate the classification of a function of an attribute. 

8a. function of an attribute KW’Jb,,lfU = T.S. 
classified T.S. for some i 

.f = average, count, sum, max, mm for some j 

8b. average of c is classified T.S. L(average( PJ[c] R)) = T.S. 

The operators can be combined to provide a very flexible classification policy. The following set of 
constraints combine classification by context and content. 

9a. 

9b. 

relationship between elements 

in different relations 
classified T.S. 

relationship between a and e 
when b = Purple 
is classified T.S. 

L(RJ]Q . ..](SL[P](R.JN[jp]...])))=T.S. 
for 2 or more i’s 
for 1 or more j’s 

L(PJ[a, e](SL[b = Purple](R JN[c = d] S))) = T.S. 

Note that query modification prevents one individual query from violating a constraint, but on multiple 
queries. Enforcing constraints across multiple queries would require use of a history file or equivalent 
mechanism. Such a mechanism would enable the DBMS to treat a single query in the context of all previous 
queries made by a given user. 

Example : 
Consider constraint number 5b: 

L(PJ[a, e](R JN[c=d] S))=T.S. 

Suppose the user makes the following two queries: 

1. P.&z, c]R 

2. PJ[d, e]S 

These are equivalent to the single query: 

3. PJ[a, e](RJN[c=d] S), 

which would have been rejected by query modifi- 
cation due to constraint 5b. The first 2 queries are 
equivalent to the 3rd query, because the foreign 
key in relation R (c) is displayed in the 1st query, 
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and the key of relation S(d) is displayed in the 
2nd query. The user can compute the result of the 
join between R and S manually, and thus dis- 
cover the relationship between attributes a and e. 

7. Query Modification 

Query modification is the mechanism for support- 
ing the classification policy. The user’s query is 
first modified according to the security constraints 
so that the response can be assigned a classifica- 
tion which will make it observable to the user. The 
modified query is then compiled and executed. We 
will first state the essential points in the query 
modification algorithm briefly, and then describe 
this algorithm in greater detail. 

When a user poses a query, this query is mod- 
ified as follows: Select those constraints from the 
set of all constraints, which have classified at least 
one attribute with a classification level not less 
than or equal to that of the user. Then modify the 
query by applying these selected constraints in 
such a way that when the modified query is posed, 
only the information in the database which is 

classified at an equal or lower level than that of 

the user is returned. 
In the algorithm we will only consider a subset 

of the queries in the standard form given in the 
previous section. The queries in this subset are of 
the form: 

where E is either a base relation or a relation 
derived from base relations using the operators 
CP, UN, and DF. The essential points of the 
argument can be clearly exhibited by considering 
this subset of queries, and we can extend our 
argument to include all types of queries. 

Most common and useful queries belong to this 
subset. For example, it can be shown by induction 
on the number of operators that any query which 
uses only the operators PJ, SL, JN, and CP 

belongs to this subset. 
Before we state the algorithm, we will clarify 

the special terms that we have used. By an “empty 
query’ is meant a non-existent query. By the 
‘qualification in a query or a constraint’ is meant 
the condition specified in the ‘where’ clause in the 
operation SL. 

The algorithm proceeds in stages: 

STAGE 1: SELECT THE CONSTRAINTS RELEVANT TO THE QUERY 

Let C,, C,, C,,. , C, (n 2 1) be the constraints where for each i 

(1~ i G n) the level assigned in C, is denoted by L(C,). Assume that 

the classification levels form a lattice where ‘ Q ’ is the 

partial ordering. Therefore, for any two levels f., and L,, either L, AND 

L, are incomparable, L, < L,, or L, > L,. 

Let Q be the query posed by a user whose clearance is L. Let the 

qualification in the query be G. Note that G may be NULL. Let the 

attributes used in the qualification be B,, B,, B, and those used in 

the result be A,, A,. . A,,,. Let (P,, PI,.. ., Pr) (r > 1) be the largest 

subset of {C,, C,, , C,) satisfying the following conditions: 

1. L(P,)not ~Lwherelgigr. 

2. For each i(1 4 i < r), the set of attributes classified in P, is a 

subset of {A,, A, ,... A,,,, B,, B, .._. B,). 

P,, Pz,... P, are the constraints relevant to the query. Let the 
qualification associated with each P, be F, (1~ I < r). Note that E; 

may be NULL. 

STAGE 2. TRANSFORM THE QUERY Q TO Q * 
CONTINUE := TRUE; INDEX := 1; 

WHILE (INDEX < r AND CONTINUE) DO 

Consider constraint P,. 

IF F, is NULL, i.e. the constraint has no qualification, THEN 
Q* is the empty query. 

CONTINUE := FALSE; 

ELSE 

Consider the expression (C AND (NOT(c)). 
IF this expression results in a CONTRADICTION, i.e. it consists 

of a subformula of the form (A AND (NOT A)) THEN 

Set Q* to be the empty query. 

CONTINUE := FALSE; 
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ELSE 

Let R, and R, be the relations to which a select is applied in the query Q and the constraint P, respectively. 

Set R = R, CP R, 

Let K be the condition that is used to JOIN R, and R, over 

common attributes, i.e. R,JP[K]R, = SL[K#R,CPR,) 

The new query Q is obtained from the old query Q be substituting R for R, and (G AND K AND (NOT(c))) for the 

qualification G, 

i.e. R, := R; G := G AND K AND (NOT( 4)) 

IF INDEX = t THEN 

CONTINUE := FALSE; 
Q* :=Q; 

ELSE 

INDEX := INDEX + 1; 

ENDIF; 

ENDIF; 

ENDIF; 

ENDWHILE; 

We will now trace this algorithm with an exam- 
ple. Consider the relations R and S defined in 
Fig. 3. Let the constraints enforced be 

L(PJ[a](SL[a=22]R)) =T.S. 

L(PJ[b](SL[a=22]R))=T.S. 

L(PJ[c](SL[a=22]R))=T.S. 

Suppose an unclassified user wants to obtain the 
colors and cities when a = 22. The user will pose 
the following query: 

We are currently in the process of investigating 
how the mechanisms of the SAT TCB could be 
utilized to minimize the amount of code that has 
to be verified within the DBMS based on the query 
modification process, extending our approach to 
include updates, analyzing mechanisms for in- 
ference control, and analyzing covert channels. 
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PJ[h, e](SL[u=22](RJN[c=d] S)) PI 

This query is equivalent to the following query: 

PJ[b, e](SL[u=22AND c=d](R CPS)) 

It can be seen that the constraints are relevant. 
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The expression (G AND NOT( 4)) in stage 3 
of the algorithm is (a = 22 AND c = d AND 
NOT(u = 22)). This results in a contradiction. 

Therefore the query is modified to the empty 
query and no information is returned to the user. 
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8. Conclusion and Future Work 

PI 
We have presented a unique approach for defining 
classification rules and enforcing a classification 
policy that ensures that the response to a user’s 
query against a multi-level secure database can be 
assigned a classification which will make the re- 
sponse observable to the querying user. This ap- 
proach consists of the modification of a user’s 
query based on the security constraints and the 
application of the modified query to the database. 
We have also devised an algorithm which success- 
fully implements this query modification process. 
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