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First, third, and fifth graders (French children in American-numbered grades)
were asked to solve arithmetic problems in which an initial state was modified
by two successive transformations. Three independent variables were manip-
ulated systematically. First, the unknown state was either the final state (S1)
or the initial state (S2). Second, either the known state (O1) or the transfor-
mations (O2) appeared in the first place in the problem wording. Third, the
question was either located at the end (Q1) or at the beginning (Q2) of the
problem text. As anticipated, these modifications strongly affected the
performances at every age: S1 appears clearly easier than S2; O1 leads to a
better performance than O02; and Q1 is better than Q2. The third graders
participated in a second experiment in which they had to solve the same
problems but with easier numbers. As in the first experiment, we found strong
effects related to the problem types (SI vs. S2) and to the place of the
transformations in the problem. However, modifying the place of the
question did not show any reliable effect. The theoretical implications of these
results are discussed in terms of span of working memory.

Arriving at the solution of a verbally presented arithmetic problem implies
the use of at least three kinds of “mental operations.” First, we must store
the information as a whole until we know the task. Second, we must find an
appropriate schemata for organizing and solving the kind of problem
encountered in long-term memory (LTM).! Third, we must apply the

Requests for reprints should be sent to Michel Fayol, Laboratoire de Psychologie, Ancienne
Faculté, Université de Bourgogne, 36 Rue Chabot-Charny, 21000 Dijon, France.

! Another possibility is that a structure may be constructed by a comprehension procedure
that could combine components of information in an appropriate way. Nevertheless, such a
procedure also implies (a) a storage of information and (b) a search in LTM of relevant (partial)
schemata.
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problem solving process to the data at hand and control its execution. To
this end, we must rely on computations or on prestored knowledge in LTM
(e.g., “number facts” suchas 3 + 2 = 5).

According to Baddeley and Hitch’s (1974) formulation (see also
Baddeley, 1986; Hitch, 1980), two different types of components make up
the working memory (WM) system. The first component is a control
executive processor: a kind of high-level, multipurpose system, initiating,
monitoring, and coordinating some lower level processes. The second
component consists of some slave systems, dealing with short-term storage
and treatment of specialized information. These slave systems include the
articulatory loop, dealing with storage of phonemic information, and the
visuospatial scratch pad, dealing with visuospatial information. We expect
interferences to occur within such a limited “work-space,” when the storage
load increases in a slave system (e.g., the articulatory loop), the perform-
ance level on a concurrent task (e.g., reasoning) should decrease, and/or the
time needed to perform the task should increase. Thus work capacity can be
allocated, at least partially, either to store or to process the information
according to the demands of the task at hand.

The developmental point of view adopted here increases the complexity
of the problem. As is well known, ontogenetic development implies two
kinds of progress. On the one hand, children acquire more facts, algo-
rithms, and schemata which are stored in LTM (Naus, 1982). On the other
hand, the span of the WM system seems to increase or to be used more
efficiently with age (cf. Case, 1982; Case, Kurland, & Goldberg, 1982;
Dempster, 1981; Hitch, 1978; Hitch & Halliday, 1983; Hulme, Thompson,
Muir, & Lawrence, 1984; Pascual-Leone, 1970).

In line with that broad theoretical approach, we are studying verbally
presented arithmetic problems. We take as our working hypothesis that
children do not have well-organized schemata for different types of verbally
presented problems. They must therefore build a representation in a
“bottom-up” manner from the text itself; this heavily taxes WM. Thus,
computational difficulties compete with building a representation for WM
capacity. Consequently, children will be more dependent on the specific
wording of problem statements than will adults (cf. Hudson, 1983; Riley,
Greeno, & Heller, 1983; Vergnaud, 1982).

Accordingly, we selected two types of problems, differing in their
semantic structure. All problems have the same underlying “change pattern”
(Riley et al., 1983): An initial state (/) is modified by two successive
“transformations” (71 and T2 such that 7/ + 72 = T), leading to a final
state (F). We systematically varied the unknown state either for F (problem
structure S1) or for I (problem structure S2). In doing so, we contrasted two
types of “change problem”: those with result unknown versus those with
start unknown (Riley et al., 1983). (See Table 1 for an example.) In line with
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TABLE 1
Examples of Problem Types
Semantic Structure Examples
S1  Known : I (initial state) Paul has candies. His mother gave him
T1I and T2 (transformations) candies. How many candies
Unknown : F (final state) does Paul have now?
S2  Known : F (final state) Paul has now candies.
TI and 72 His mother gave him candies.
(transformations) His sister gave him candies.
Unknown : 7 (initial state) How many candies did Paul have before

his mother and his sister gave him candies?

the results of several previous studies, we expected S2 problems to be harder
to solve than S1 problems. However, the differences between S2 and S1
should decrease as the age of the children increases.

Moreover, we hypothesized that the problem’s semantic structure alone is
not sufficient to trigger the solution process. Some modifications of the
formulation.can facilitate or inhibit data processing, and thus finding the
solution. Two main factors can be singled out:

1. The location of the question (Q) at the end of the problem (Q1) or at
the beginning (Q2). An early question could act like an “advanced organiz-
er” allowing the subject to search and activate the relevant (or supposed to
be relevant) schema of representation and solution in LTM. The data can
then be organized quickly and processed in a somewhat “top-down”
manner. Consequently, the working memory load is lightened and Q2 will
be easier than Q1 (assuming that the correct schemata have been activated
in LTM). This hypothesis is consistent with the literature on the compre-
hension of narrative and expository text (Kieras, 1980; Kosminsky, 1977).2

2. The order of information presentation. Either the state (O1) or the
transformation (O2) can appear in the first place. When the transforma-
tions are given first, it is possible to avoid storing two transformations by
putting the result (7) in the place of 77 and 72. Consequently, O2 should
facilitate the solution process.

To sum up, three experimental factors emerge from the analysis: the type
of problem (S1 vs. S2), the location of the question (Q1 vs. Q2), and the

2An alternative possibility suggested by Greeno might be that knowing the goal from the
beginning could permit the data following to be processed more efficiently. Such a possibility
Jeads to the same predictions as our hypothesis and seems both compatible and consistent with
our theoretical analysis.
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order of presentation of the information (O1 vs. O2). These three between-
subjects factors were crossed in 2 X 2 X 2 experimental design.

However, a major problem still remains: There exists a clear and
well-known age difference in numerical ability. Generally, 6-year-old
children solve one-digit addition (e.g., 3 + 4) by counting explicitly.
Ten-year-olds, however, have access to LTM stored solutions (Ashcraft,
1982; Ashcraft & Battaglia, 1978; Ashcraft & Fierman, 1982; Groen &
Parkman, 1972; Svenson, 1975). Thus, giving the same numerical data at all
ages places the younger participants in a state of “WM overload.” One
possible way to overcome this problem is to equate roughly the level of
numerical difficulty of the task for the different age groups. To do so, we
pretested several series of three-term additions with several groups of
children (ages 6, 8, and 10 years). Participants were tested individually.
Additions were selected to match the children’s school level (according to
textbooks). Each child was asked to perform 20 additions (first graders) or
30 additions (third and fifth graders). Additions were randomized before
cach presentation. Participants were given 10 sec to give an answer. Time
‘was measured with a stopwatch. The first graders (# = 10) did addition of
three one-digit numbers without carrying. The third graders (n = 10) did
addition of one two-digit numbers and two one-digit numbers without
carrying (see Table 2 for an example). The fifth graders (n = 10) did
additions of three two-digit numbers, two ending with 5, and one ending
with 0. Only the operations solved by 80% of the participants at a given age
were included as stimuli in the experiment. The children were allowed to
count aloud or to use their fingers. Although many different number series
were tested with several groups of children for each age, this was not,strictly
speaking, a controlled experiment. Our aim, however, was to obtain a
rough control for the differential WM load by age. We used that procedure
only for addition. Table 2 shows some examples of the number series used
for different age levels.

We addressed the problem of the impact of numerical data magnitude
more precisely in the second experiment. In this experiment, we presented
the problems with two different series of numbers. The ones used in the first
experiment we called “difficult numbers”; these are abbreviated N2. The

TABLE 2
Examples of Number Series Used in Experiment 1

First Grade Third Grade Fifth Grade

Initial state 2 24 25
Transformation T/ 4 3 40
Transformation 72 1 5 15
Final state 7 32 80
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second series was constructed to reduce the “computational load” and are
called “easy numbers” and denoted by N1. See Table 2 for an example. We
hypothesized that solving the N1 problems should tax the WM work-space
less, particularly because the “central executive” that initiates, controls, and
coordinates the computations has a lighter load for N1 problems than for
N2 problems. Consequently, we expected the number of miscalculations,
errors, and semantic mistakes to decrease for N1 problems. Obviously,
because working memory space is limited, every component taking up a
large part of it reduces the remaining space available for other activities.
Thus, increasing the computational difficulties should lead to a “lowering
of reasoning” about the “semantic interpretation.”

EXPERIMENT 1
Method

Three between-subjects variables were manipulated. First, the unknown
state was either the final state (S1 problems) or the initial state (S2
problems). Second, the order of information presentation was counterbal-
anced: either state first (O1) or transformation first (O2). Third, the
question was either located at the end (Q1) or at the beginning (Q2) of the
problem text. These three factors were crossed in a 2 x 2 X 2
factorial design. The problems were constructed with eight varieties of
“countable” objects: marbles, candies, dishes, pencils, sheets, books,
persons, and cars. For each age level, every object was associated with one
and only one numerical series (see Table 3 for some examples). These series
were selected to offer roughly the same difficulty level at each age.

Children. Sixty-four children in each of three age groups participated
in the first experiment (mean ages: 6.8 years, 8.8 years, and 10.7 years). The
children came from three predominantly upper-middle-class schools. They
were tested individually in sessions lasting about 40 min.

Procedure. In the test sessions, children were first given a series of
warm-up exercises. These exercises differed for each age group. Six-
year-olds were asked to count aloud forward and backward from 1 to 10.
Eight-year-olds were asked to count forward from 10 to 40 by steps of 2,
and then to count backward from 40 to 10 by steps of 5. Ten-year-olds were
asked to count, by steps of 5, from 20 to 90, and then backward from 100
to 10. After these exercises, participants were told to count objects shown
to them on cards without touching them. They were presented with a series
of five cards with a number of dots varying from 3 to 7 drawn on them (the
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TABLE 3
Examples of Every Modality of the Experimental Problems

S101 Q1 Paul had candies. His mother gave him candies. His sister
gave him candies. How many candies does Paul have now?

S1 01 Q2 I"d like to know how many dishes there are now on the table (or “in the
dresser”). There were dishes on the table. Mammy layed down
___dishes on the table. John layed down dishes on the table.

S1 02 Q1 On this morning cars went into the garage. At noon cars
went into the garage. Yesterday there were already cars in the ga-
rage. How many cars are there now in the garage?

S102Q2 I’d like to know how many sheets of paper does Aline have now in her exer-
cise book. She has put in pink sheets then she has put in
— green sheets. She had already white sheets in her exercise
book.

S2 01 Q1 Alan has now marbles. During playtime, he won marbles. At
noon he won marbles. How many marbles did Alan have before
he went to school this morning?

S201 Q2 I’d like to know how many persons there were in the playground before the
coming of the boys and the girls. There are now persons.

boys came, then girls came.

S2 02 QI At Christmas, Ann’s grandmother bought books for her. For the
new year, her brother bought books for her. Ann has now

books. How many books did Ann have before Christmas?

S202Q2 I'd like to know how many pencils did Valery have before receiving the red
and the green ones. She received red pencils then she received

green pencils. She has now pencils.

cards were presented in random order). Finally, participants were given a
short-term memory task with the number series of the Wechsler Intelligence
Scale for Children. _

When these warm-up exercises were completed, the experimenter told the
child to try to solve the problems as quickly as possible, though without
hurrying. The experimenter shuffled the cards on which the problems were
written and picked one out. The problem was read, and the child was
allowed to solve it. The experimenter then asked the child to give an answer,
to explain how the problem was processed, and finally to recall the
problem. Eight problems were presented following this procedure.

Results

Problems were scored according to the following schema: 0 = all wrong, 2
= all right, and 1 = right for a partially correct answer (one operation out
of two). We adopted this scheme because of the hierarchical nature of the
solution. To solve each problem, a middle operation had to be computed.
Thus a participant could have stopped at this step and be credited with 1
point, or could have finished solving the problem and obtain a score of 2.
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The analysis of variance (ANOVA) of these scores is equivalent to an
ANOVA of binary data, and is known to be robust under these conditions
(cf. Abdi, 1987; Hsu & Feldt, 1969).

The data were submitted to ANOVA with four fixed between-subjects
factors. The four factors led to statistically reliable main effects. Contrary
to our expectations, age led to increasing scores (6.25 at age 6, 7.28 at age
8, and 9.40 at age 10), F(2, 168) = 9.52, p < .001. Recall that, ideally, an
age effect was not expected (due to the tentative adaptation of the problem
difficulty to age). However, a finer grained analysis showed a strong
interaction between age and structure, F(2, 168) = 8.53, p < .001 (see
Figure 1).

As shown in Figure 1, this interaction is due essentially to the age factor
having an effect only with S2 problems. An analysis conducted on two
“subdesigns” confirms this interpretation: The weight of the age factor,
negligible with S1, v = 0, F(2, 168) = 0.16, ns, becomes very strong with
S2, @ = .97, F(2, 168) = 23.88, p < .00001. Thus, equalizing the
numerical series for the three age levels worked only for S1 problems. For
S2, the results showed a clear-cut trend toward regular progress with age.
These results can be explained by an increase in the abilities either of
subtraction computation or of constructing an appropriate problem situa-
tion representation. Although our experiment does not allow us to decide
between these alternatives, the current relevant literature supports the
contention that the results cannot generally be attributed to an age
improvement in subtraction ability; indeed, this operation does not appear
to be more difficult than addition (Brainerd, 1983). Rather, the difficulties
come from the obstacles created for the youngest children in constructing
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problem representations, a fact supported by previous research results
(Riley et al., 1983; Vergnaud, 1982). Children’s progress comes from a
better understanding of problem-solving semantics.

For the problem types, S1 is clearly easier than S2 (Ms = 10.26 and 5.09),
F(1, 168) = 79.58, p < .0001. This is a commonplace result: In change
problems, finding the result state always seemed easier than discovering the
start state (Riley et al., 1983; Vergnaud, 1982). The order of information
presentation proved to be significant, F(1, 168) = 6.84, p < .01. As
anticipated, locating the transformations at the beginning of the problem
text led to better performance than placing them after the state (Ms = 8.44
and 6.91 for O2 and O1, respectively). The results supported our hypothesis;
formulating the question first increased the scores, F(1, 168) = 13.35, p <
.001 (Ms = 8.73 and 6.62 for Q2 and QI, respectively). Table 4 provides
detailed results.

The Problem Type X Place of Question interaction was also statistically
reliable, F(1, 168) = 4.02, p < .05. Although not anticipated, this
interaction fits within our general theoretical framework. Thus, locating the
question at the beginning of the problem text (Q2) led to better performance
than locating the question at the end of the text (Q1); this difference was
much more clear-cut under S2, when the problems are more difficult (see
Figure 2 for detailed results).

EXPERIMENT 28
Method

In this experiment, we used the same types of problems as those used in
Experiment 1, although we simplified their numerical difficulty. Problems
were made easier by using only two-digit numbers where the second digit
was always 0 (as a consequence, there was no carrying). For example, if the
numbers used in the first experiment were 24, 3, 5, the numbers in the
second experiment were 20, 40, 10. We call the numbers of Experiment 1

3As the same control group is used in both studies, the statistical analysis of the experiment
is not independent of the statistical analysis of the other study. A possible way to take into
account this lack of independence is to treat both studies as two analytical comparisons (or
multiple comparisons, or “subdesigns”) derived from a complete experimental design. In this
case, the use of the “Bonferroni approach” (cf. Abdi, 1987; Miller, 1981) gives a conservative
statistical test. In our case, as we have two comparisons (or subdesigns), the Bonferroni
approach is equivalent to dividing the significance level by 2 (i.e., to use alpha = .025 instead
of .05 and alpha = .005 instead of .01). Although we have not reported this test, general
interpretation remains unchanged when we adopt that procedure. Indeed, most of the reported
significant results reached levels of significance smaller enough to be robust to any correction.
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TABLE 4
Experiment 1: Mean Scores as a Function of Problem Type, Order of
Information, Question Placement, and Age

S1 S2
(0] 02 ol 02
Mean Age Q1 (0] (o)} (o)1 Q1 Q2 01 Q2
6 years, 8 months 8.75 10.75 10.12 11.87 0.25 2.87 1.5 4.75
8 years, 8 months 8.5 9.5 11.5 10.37 0 6 5.37 7
10 years, 7 months 9.12 9.62 10.75 12.37 7.12 10.5 6.37 9.25

Note. Scores are of a possible 16.

“difficult numbers” (condition N2); the numbers of Experiment 2 are “easy

numbers” (N1). We followed Experiment 1’s procedures for Experiment 2.
We selected 64 new third graders (M = 8.4 years) with the same

background as our first students to participate in this experiment.

Results

The data collected from the third graders were analyzed by ANOVA with
four fixed between-subjects factors. Three of these factors proved statisti-
cally reliable. As in Experiment 1, we found strong main effects for
problem type, F(1, 112) = 75.8, p < .0001, and place of transformations,
F(1, 112) = 28.94, p < .001. The modifications affecting the place of the
question did not show any reliable effect, F(1, 112) = 1.08. The novelty
comes from the highly significant variations associated with simplifying the
numerical series: mean score of 10.66 under N1 (“easy number”) versus
mean score of 7.27 under N2 (“difficult number”), F(1, 112) = 25.1, p <
.001 (see Table 5 for detailed results).
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TABLE 5
Experiment 2: Mean Scores as a Function of Number Series, Problem Type,
Order of Information, and Question Placement

NI (Easy Numbers) N2 (Difficult Numbers)

S1 S2 S1 S2
Question Placement (0)] 02 (o)} 02 ol 02 ol 02
Q1 13.87 14.12 3.37 1225 85 115 0 537
Q2 13.25 14 275 115 9.5 10.37 6 7

Note. Scores are of a possible 16.

Three interactions reached significance. The first was only slightly
reliable, F(1, 112) = 3, p < .10 (see Footnote 3), but, as anticipated, it
showed that placing the question at the problem text’s beginning led to
better scores only with the difficult numbers (N2). This is consistent with
our theory.

The other significant interactions were Problem Type x Order of
Information, F(1, 112) = 12.15, p < .001, and the (just reliable)
second-order Problem Type X Order of Information X Difficulty of
Number Series, F(1, 112) = 6.57, p < .05. They showed that even if
locating the two transformations at the problem text’s beginning always led
to better scores, this effect was systematically more prominent with the
difficult problems (S2) associated with the “easy numbers” (N1). As can be
seen in Figure 3, when all these conditions are combined (N1, S2, O2), the
mean score almost reaches the one achieved under N1, S1, O2.

Nevertheless, we must interpret this last result cautiously. Indeed, as it
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appears in Table 5, the mean score obtained under N1, S2, O1 is unusual in
that it is the only case where a mean score ranks lower in N1 than in N2 (M
= 2.75 under N1, S2, O1, Q1 vs. M = 6 under N2, S2, O1, Q1)—a fact that
remains to be explained.

Thus, except for this last point, the quantitative analysis supported our
hypothesis. An objection could be raised, however. In spite of the superior
scores collected under N1, we cannot be sure that they were the result of
better reasoning. They could have come from a more restricted number of
errors in the computation under N1 in comparison with N2.

To rule out this objection, we conducted a qualitative analysis of the
solution processes used by the third graders under N1 and N2. Due to the
rare occurrences of semantic interpretation errors under S1, we studied only
the S2 problems. The processes were inferred from the explanations given
by the children and sometimes from their recollections.

We assessed and classified the processes according to their relevance to
the problem’s solution even if the numerical results associated with them
were wrong. That is, we considered processes correct if they showed that the
child had constructed a correct semantic interpretation. Concerning S2
problems, we identified three types of correct processes:

[u—

. Compute (71 + 72) = T and then solve the subtraction F — T.

2. Compute (F — TI) = M (“middle state”) and then (M = T2).

3. Compute (71 + T2) = T and then search for the cardinality of the
complementary set (T + x = F).

Although the proportion of correct processes decreased from N1 (51%)
to N2 (42%), the amount of difference was smaller than expected. A
fine-grained analysis shed some light on this fact. The observed perform-
ances were always better for N1 relative to N2 except for the combination
01, Q2 —a point already mentioned and currently unexplainable. As Table

TABLE 6
Numbers and Proportions of Relevant Processes Used
Under N1 and N2 Problems

Difficulty of the Number Series

N1 N2
Modalities of the Problems (Easy Numbers) (Difficult Numbers)
01 Q1 13 (.20) 1(.02)
01 Q2 12 (.19) 35 (.55)
02 Q1 56 (.88) 34 (.54)
02Q2 48 (.75) 37 (.58)

Note. Counts represent a possible 64 in each cell.



198 FAYOL, ABDI, GOMBERT

6 shows, a clear-cut improvement in the proportion of correct processes
from N2 to N1 can be seen.

These facts lend support to our hypothesis. The qualitative analysis
allowed us to separate, at least roughly, the difficulties due to computations
from errors related to the semantic interpretation. It highlighted the
anticipated interaction between the span of the numbers used in the
problems and the level of reasoning: The harder the computations, the more
numerous the errors in semantic interpretation. (However, Mann-Whitney
tests failed to detect a significant difference between N1 and N2 under the
same condition.) Indeed, we observed that when the numbers became
difficult to store and process (as under N2) and when the wording of the text
was not facilitative, a frequent error arose: S2 problems were treated as if
they were S1 problems. This led to participants summing the three
numerical data furnished, a fact we observed occurring at a rate of 84%
under N2, O1, Q1 and at a rate of 34% under N1, O1, Q1.

GENERAL DISCUSSION

Consistent with our theory, we can see that the underlying semantic
structure of verbally presented problem texts is one, but only one, factor
involved in solving a problem. Indeed, as found elsewhere (Riley et al.,
1983; Vergnaud, 1982), S2 problems (searching for an initial state while
knowing final state and transformation) always appear more difficult than
S1 problems. This proves true regardless of the age level or the difficulty of
the numbers to be processed. We observed very large differences in our two
experiments.

But the semantic structure is only one factor. As Kintsch and Greeno
(1985) noted, “errors may reflect lack of knowledge, but at other times
merely the limited information-processing capacity of the human organism”
(p. 128). Children dealing with a verbally presented problem text must
construct “on-line” a schematized problem representation. For that very
reason, they depend on the text’s wording.

Our results clearly show that slight variations in problem text organiza-
tion lead to strong variations in scores, regardless of age. In particular, we
found that placing two additive transformations and/or the question at the
beginning of the problem text led to better performance. These findings
were anticipated in light of our hypothesis, which stated that every factor
lightening the WM load should facilitate the processing of the data at hand
and thus, increase the performance level.

Interestingly enough, the effects of the textual organization manipula-
tions were constrained by both ceiling and floor limits. The ceiling limit was
encountered under S1 when the problems proved so easy that the children
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solved them whatever the conditions. The floor limit appeared in S2 with
the first graders, when the problems seemed too difficult to be tackled in
spite of any helpful information. Within these boundaries, we observed
reliable effects as predicted by the theory.

We believe that placing the question at the problem text’s beginning
allows the participant to find out very quickly the relevant schematized
problem representation and its associated problem-solving procedures.
Thus, when such a representation is available, participants can proceed in a
predominantly top-down fashion, filling in the empty slots of the schema
with the data as they are encountered. In the Q1 condition, they are
compelled to proceed in a more bottom-up manner, which overloads the
WM space (see Kintsch & Greeno, 1985, for a processing model operating
in a bottom-up fashion).

Placing the two additive transformations 77 and 72 at the beginning of
the problem text also increases the scores. We believe this occurs because 7/
and 72 are quickly and easily perceived as constituting a “chunk,” and this
is recorded under 7 = 71 + 72 after applying the addition. As T occupies
less work-space than its two components, the WM load should be lightened.
As a consequence, the problem’s solution is facilitated.

The last factor to act in line with our theory is the relative difficulty of the
numerical computations. As observed in Experiment 2, a decrement in
difficulty (e.g., by substituting series like 20 + 40 + 10 for24 + 3 + 5)to
avoid carrying led to superior performance. That improvement does not
stem wholly from a reduction of the computational error rate, but also from
an increase in the proportion of relevant semantic interpretations. These
results have been established with both a quantitative and qualitative
analysis. However, confirmation by other experiments is still needed,
insofar as some difficulties arose in a group of problems (N2, S2, O1, Q1).
Nevertheless, most of the data confirm the theory’s relevance: As the
storage load increases in the WM system (in the “articulatory loop,”
following Hitch, 1980), the space devoted to reasoning (here constructing
the schematized representation of the situation and applying the problem-
solving procedures) is reduced. Consequently, as already observed in other
tasks (Hitch, 1980), the error rate increases. Specifically, S2 problems
tended to be solved as if they were S1 problems.

Thus it seems that solving verbally presented arithmetical problems
requires that the student can either retrieve and activate in LTM or can
construct in WM a relevant schematized representation of the problem
situation. It also requires that the WM system, in which the numerical data
are stored, rehearsed, and processed, is not overloaded.

This explains the effect of modifying the problem texts’ wording:
Lightening the load on WM increased the work-space devoted to reason-
ing, and better performance followed. Nevertheless, this is true only insofar
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as two conditions are fulfilled. First, the schemata of representation and
solution must not be retrieved and applied in a fully automatic fashion.
Indeed, as automatization rises, the WM becomes less and less taxed, a fact
clearly observed with S1 problems. Consequently, even if work-space
appears very limited, a solution remains possible. Second, the student must
not be given a completely new or ill-mastered problem. If this happens, he
or she can succeed but only insofar as he or she can mimic the actions or
relationships described in the problem with material at his or her disposal
(Carpenter, Hiebert, & Moser, 1981; Carpenter & Moser, 1982). All these
procedures avoid overloading but cannot be used “in the mind.” This is why
we observed such a high error rate on the S2 problems, and with the third
graders; WM was too heavily taxed to be able to “handle” the tasks of
constructing a schematized representation of the problem situation.

To summarize, solving verbally presented arithmetical problems seems to
require an adjustment between two kinds of processes. The first process
functions mainly in a bottom-up manner; it is essentially a WM space-
dependent process and so taxes the work-space. It could be fruitfully
simulated by a computer model such as the one presented by Briars and
Larkin (1984). This model mimics the problem-solving processes by acting
them out with representation of physical counters. The second process acts
in a top-down fashion providing ready-to-fill-in “schemata”; the data is
essentially “knowledge-dependent.” This process does not put an important
load on WM capacity. Success depends on a relatively precise balance
between these two processes. Finally, even if work-space appears very
limited, its storage and processing capacities depend on knowledge and
practice as much as on a fixed dimension (developing or not).
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