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Correspondence Analysis

Hervé Abdi & Lynne Williams

Correspondence analysis (CA) is a generalized principal component

analysis tailored for the analysis of qualitative data. Originally, CA was

created to analyze contingency tables, but CA is so versatile that it is now

often used with other data table types as long these tables contain only

non-negative numbers.

CA transforms a data table into two sets of factor scores: One set for

the rows and one set for the columns. The factor scores give the best

representation of the similarity structure of the rows and the columns

of the original data table. In addition, the factors scores can be plotted

as maps, which display the essential information of the original table.

In these maps, rows and columns are displayed as points whose coordi-

nates are the factor scores and where the dimensions are called factors.

Interestingly, in CA the factor scores of the rows and the columns have

the same variance and, therefore, both rows and columns can be con-

veniently represented in one single map. The modern version of corre-
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2 Correspondence Analysis

spondence analysis and its geometric interpretation originated in France

in the 1960s and is associated with the French school of “data analysis”

(analyse des données).

As a technique, CA was often discovered (and, then, re-discovered)

and so variations of correspondence analysis can be found under several

names such as “dual-scaling,” “optimal scaling,” or “reciprocal averaging.”

The multiple identities of correspondence analysis are a consequence of

its versatility and large number of properties: It can be defined as the

optimal solution for a lot of apparently different problems.

1 Notations

Matrices are denoted with upper case letters typeset in a boldface font,

for example X is a matrix. The elements of a matrix are denoted with a

lower case italic font matching the matrix name with indices indicating

the row and column positions of the element, for example xi,j is the el-

ement located at the i-th row and j-th-column of matrix X. Vectors are

denoted with lower case letters typeset in a boldface font, for example c

is a vector. The elements of a vector are denoted with a lower case italic

font matching the vector name with an index indicating the position of

the element in the vector, for example ci is the i-th element of c. The

superscript T applied to a matrix or vector indicates that this matrix or

vector is transposed.

2 An Example: How French Writers Punctuate

This example comes from Etienne Brunet who analyzed the way punc-

tuation marks were used by six French writers: Rousseau, Chateaubriand,

Hugo, Zola, Proust, and Giraudoux. In his paper, Brunet gave a table
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Table 1: The punctuation marks of six French writers (from Brunet, 1989).

All
Period Comma the other

marks

Rousseau 7836 13112 6026
Chateaubriand 53655 102383 42413
Hugo 115615 184541 59226
Zola 161926 340479 62754
Proust 38177 105101 12670
Giraudoux 46371 58367 14299

recording the number of times each of these writers used three punctu-

ation marks: the period, the comma, and all the other marks (i.e., inter-

rogation mark, exclamation mark, colon, and semi-colon) grouped to-

gether. These data are reproduced in Table 1. From these data we can

build the original data matrix which is denoted X. It has I = 6 rows and

J = 3 columns and is equal to

X =



7836 13112 6026

53655 102383 42413

115615 184541 59226

161926 340479 62754

38177 105101 12670

46371 58367 14299


. (1)

In the matrix X, the rows represent the authors and the columns repre-

sent the types of punctuation marks. At the intersection of a row and a

column, we find the number of a given punctuation mark (represented

by the column) used by a given author (represented by the row).
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3 Analyzing the rows

Suppose that the focus is on the authors, and that we want to derive

a map that reveals the similarities and differences in punctuation style

between authors. In this map, the authors should be points and the dis-

tances between authors will reflect their stylistic proximity. So, on such a

map, when two authors are close to each other these two authors punc-

tuate in a similar way and when two authors are far away these two

authors punctuate differently.

3.1 A first (bad) idea: doing PCA

1

2

Rousseau

Zola
Proust

Hugo
Giraudoux Chateaubriand

Aloz

Figure 1: PCA analysis of the Punctuation. Centered Data. Aloz is a supplementary element. Even though
Aloz punctuates the same way as Zola, Aloz is further away from Zola than from any other author. The first
dimension explains 98% of the variance. It reflects mainly the number of punctuation marks produced by the
authors.

A first idea is to perform a principal component analysis (PCA) on

X whose results are shown in Figure 1. The plot suggests that the data

are quite unidimensional. And, in fact, the first component of this anal-

ysis explains 98% of the total inertia (a quantity akin to variance) of the

data. How to interpret this component? It seems related to the number

of punctuation marks produced by each author. This interpretation can

be tested by creating a fictitious alias for Zola. To do so: Suppose that,

unbeknown to most historians of French literature, Zola wrote a small

novel under the (rather transparent) pseudonym of Aloz. In this novel,
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he kept his usual way of punctuating, but because this is a short novel,

he obviously produced a smaller number of punctuation marks than he

did in his complete œuvre. Here is the (row) vector recording the number

of occurrences of the punctuation marks for Aloz:

[
2699 5675 1046

]
. (2)

For ease of comparison, Zola’s row vector is reproduced here:

[
161926 340479 62754

]
. (3)

So, Aloz and Zola have the same punctuation style and differ only in

their prolixity. A good analysis should reveal such a similarity of style,

but as Figure 1 shows, PCA fails. In this figure, we have projected Aloz

(as a supplementary element) in the analysis of the authors and Aloz is,

in fact, further away from Zola than from any other author. This exam-

ple shows that using PCA to analyze the style of the authors is not a good

idea because PCA is mainly sensitive to the total number of punctuation

marks produced rather than to how punctuation is used. But, the style

of the authors, is, in fact, expressed by the relative frequencies of their use

of the punctuation marks. This suggests that the data matrix should be

transformed such that each author is described by the proportion of the

usage of the punctuation marks rather than by the number of punctua-

tion marks used. With this transformation, each row of the data matrix is

now called a row profile: The entries of a row profile are all non-negative

and they sum to one. The transformed data matrix storing the row pro-

files is called (not-surprisingly) a row profile matrix. In order to obtain the

row profiles, we divide each row by its sum. The matrix of row profiles
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is denoted R. It is computed as:

R = diag

{
X 1

J × 1

}−1
X =



.2905 .4861 .2234

.2704 .5159 .2137

.3217 .5135 .1648

.2865 .6024 .1110

.2448 .6739 .0812

.3896 .4903 .1201


(4)

(where the diag operator transforms a vector into a diagonal matrix with

the elements of this vector on the diagonal, and where 1
J × 1

is a J by 1

vector of ones).

A convenient way to evaluate the differences between writers is to

compare these writers to the “average writer”—A writer who would use

each punctuation mark according to its proportion in the sample. The

profile of this average writer is called the (row) barycenter (also called

centroid, center of mass, or center of gravity) of the data matrix. Here, the

barycenter of R is a vector with J = 3 elements, it is denoted c, and

computed as

cT =

(
1

1× I
× X × 1

J × 1

)−1

︸ ︷︷ ︸
Inverse of the total of X

× 1
1× I

X︸ ︷︷ ︸
Total of the columns of X

=
[
.2973 .5642 .1385

]
.

(5)

If all authors punctuate the same way, they all punctuate like the

average writer, and, therefore, in order to study the differences between

authors, we need to analyze the matrix of deviations to the average writer.

This matrix of deviations is denoted as Y and it is computed as:
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Y = R −
(

1
I × 1

× cT
)
=



−.0068 −.0781 .0849

−.0269 −.0483 .0752

.0244 −.0507 .0263

−.0107 .0382 −.0275

−.0525 .1097 −.0573

.0923 −.0739 −.0184


. (6)

3.2 Masses (rows) and weights (columns)

In correspondence analysis, we assign a mass to each row and a weight

to each column. The mass of each row reflects its importance in the sam-

ple. In other words, the mass of each row is the proportion of this row

in the total of the table. The masses of the rows are stored in a vector

denoted m, which is computed as

m =

(
1

1× I
× X × 1

J × 1

)−1

︸ ︷︷ ︸
Inverse of the total of X

× X 1
J × 1︸ ︷︷ ︸

Total of the rows of X

=
[
.0189 .1393 .2522 .3966 .1094 .0835

]T
.

(7)

From the vector m we define the diagonal matrix of masses as Dm =

diag {m} .

The weight of each column expresses its importance for discriminat-

ing between the authors. So, the weight of a column reflects the informa-

tion this columns provides to the identification of a given row. Here, the

idea is that the information provided by a column is inversely propor-

tional to its frequency, which, itself, is equal to the value of this column

component of the barycenter. Therefore the column weights are com-

puted as the inverse of the values of the barycenter. Specifically, if we
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denote by w the J by 1 weight vector for the columns, we have:

w =
[
wj
]
=
[
c−1

j

]
. (8)

For our example, we obtain:

w =
[
wj
]
=
[
c−1

j

]
=



1
.2973

1
.5642

1
.1385


=



3.3641

1.7724

7.2190


. (9)

From vector w, we define the matrix of column weights as

D−1
c = diag {w} = diag

{[
c−1

j

]}
=


3.3641 0 0

0 1.7724 0

0 0 7.2190

 . (10)

3.3 Generalized Singular Value Decomposition of Y

With all these notations defined, correspondence analysis boils down

to a generalized singular value decomposition (GSVD) problem. Specifically,

matrix Y is decomposed using the GSVD under the constraints imposed

by the matrices Dm (masses for the rows) and D−1
c (weights for the

columns):

Y = P∆QT with: PTDmP = QTD−1
c Q = I , (11)

where P is the matrix of the right singular vectors, Q is the matrix of

the left singular vectors, and ∆ is the diagonal matrix of the eigenvalues

(in the GSVD framework, Dm and D−1
c are also called metric matrices, or
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simply metrics). From this GSVD, we get:

Y =



1.7962 0.9919

1.4198 1.4340

0.7739 −0.3978

−0.6878 0.0223

−1.6801 0.8450

0.3561 −2.6275


︸ ︷︷ ︸

P

×
 .1335 0

0 .0747


︸ ︷︷ ︸

∆

×
 0.1090 −0.4114 0.3024

−0.4439 0.2769 0.1670


︸ ︷︷ ︸

QT

. (12)

The rows of matrix X are now represented by their factor scores (which

are the projections of the observations onto the singular vectors of X).

The row factor scores are stored in an I = 3 by L = 2 (L stands for

the number of non-zero singular values) matrix denoted F, which is ob-

tained as

F = P∆ =



0.2398 0.0741

0.1895 0.1071

0.1033 −0.0297

−0.0918 0.0017

−0.2243 0.0631

0.0475 −0.1963


. (13)

The variance of the factor scores for a given dimension is equal to the

squared singular value of this dimension (note that the variance of the

observations is computed taking into account their masses). Or, equiv-

alently, we say that the variance of the factor scores of one dimension

is equal to the eigenvalue of this dimension (i.e., the eigenvalue is the

square of the singular value). This can be checked as follows:

FTDmF = ∆PTDmP∆ = ∆2 = Λ =

0.13352 0

0 0.07472

 =

0.0178 0

0 0.0056

 .

(14)
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Figure 2: Plot of the correspondence analysis of the rows of matrix X. The first two sets of factors of the
analysis for the rows are plotted (i.e., this is the matrix F). Each point represents an author. The variance of
each set of factor scores is equal to its eigenvalue.

We can display the results by plotting the factor scores as a map

where each point represents a row of the matrix X (i.e., each point rep-

resents an author). This is done in Figure 2. On this map, the first di-

mension seems to be related to time (the rightmost authors are earlier

authors, the leftmost authors are more recent), with the exception of Gi-

raudoux who is a very recent author. The second dimension singular-

izes Giraudoux. These factors will be easier to understand after we have

analyzed the columns. This can be done by analyzing the matrix XT.

Equivalently this can be done by doing what is called the dual analysis.

4 Geometry of Correspondence Analysis

CA has a simple geometric interpretation. For example, when a row pro-

file is interpreted as a vector, it can be represented as a point in a mul-

tidimensional space. This way, a row profile with values for J variables

is represented as a point in a J-dimensional space but because the sum

of a profile is equal to one, row profiles are, in fact points in a (J − 1)
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Figure 3: In three dimensions, the simplex is a 2-dimensional triangle whose vertices are the vectors [1 0 0],
[0 1 0] and [0 0 1]. The point describing Rousseau (with coordinates [.2905 .4861 2234]) is also plotted.

dimensional space. Also, because the components of a row profile take

value in the interval [0 1], the points representing these row-profiles can

only lay in the subspace whose “extreme points” (i.e., vertices) have

one component equal to one and all other components equal to zero.

This subspace is called a simplex. For example, Figure 3 shows the 2-

dimensional simplex corresponding to the subspace of all possible row

profiles with three components. As an illustration, the point describing

Rousseau (with coordinates equal to [.2905 .4861 2234]) is also plotted.

For this particular example, the simplex is an equilateral triangle and,

so the three dimensional row profiles can conveniently be represented

as points on this triangle as illustrated in Figure 4a which shows the

simplex of Figure 3 in two dimensions. Figure 4b shows all six authors

and their barycenter.

The weights of the columns, which are used as constrains in the

GSVD, have also a straightforward geometric interpretation. As illus-
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Figure 4: The simplex as a triangle. a) With Rousseau (compare with Figure 3) b) With all six authors and
their barycenter.
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Figure 5: Geometric interpretation of the columns weights. Each side of the simplex is stretched by a factor
equal to the square root of the weights.

trated in Figure 5, each side of the simplex is stretched by a quantity

equal to the square root of the dimension it represents (we use the square

root because we are interested in squared distances but not in squared

weights, so, using the square root of the weights ensures that the squared

distances between authors will take into account the weights rather than

the squared weights).

To find the factors, the masses of the rows are taken into account.

Specifically, the first factor is computed such that it gives the maximum

possible value of the sum of the masses times the squared projections of

the authors points (i.e., the projections have the largest possible vari-

ance). The second factor is constrained to be orthogonal (taking into
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Figure 6: Correspondence analysis: The “stretched simplex” along with the factorial axes. The projections of
the Authors’ points onto the factorial axes give the factor scores.

account the masses) to the first one and have the largest variance for

the projections. The remaining factors are computed with similar con-

straints. Figure 6 shows the stretched simplex, the author points, and

the two factors (note that the origin of the factors is the barycenter of the

authors).

The “stretched simplex” shows the whole space of the possible pro-

files. Figure 6 shows that the authors occupy a small portion of this

whole space—A pattern which reveals that the authors do not vary much

in the way they punctuate. Also, the stretched simplex represents the

columns as the vertices of the simplex: The columns are represented as

row profiles with the column component being equal to one and all the

other components being equal to zero. This representation is called an

asymmetric representation because the rows always have a dispersion

smaller than (or equal to) the columns.
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5 Distance, Inertia, Chi-square, and CA

5.1 Chi-squared distances

In CA, the Euclidean distance in the “stretched simplex” is equivalent to

a weighted distance in the original space. For reasons—that will be clear

later—this distance is called the χ2-distance. The χ2-distance between

two row profiles i and i′ can be computed from the factor scores as

d2
i,i′ =

L

∑
ℓ

(
fi,ℓ − fi′,ℓ

)2 (15)

or from the row-profiles as

d2
i,i′ =

J

∑
j

wj

(
ri,j − ri′,j

)2
. (16)

5.2 Inertia

The variability of the row profiles relative to their barycenter is mea-

sured by a quantity—akin to a variance—called inertia and denoted I .

The inertia of the rows to their barycenter is computed as the weighed

sum of the squared distances of the rows to their barycenter. We denote

by d2
c,i the (squared) distance of the i-th row to the barycenter, it is com-

puted as

d2
c,i =

J

∑
j

wj
(
ri,j − cj

)2
=

L

∑
ℓ

f 2
i,ℓ (17)

where L is the number of factors extracted by the CA of the table, [this

number is smaller or equal to min(I, J)− 1]. The inertia of the rows to
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their barycenter is then computed as

I =
I

∑
i

mid2
c,i . (18)

The inertia can also be expressed as the sum of the eigenvalues (see

Equation 14):

I =
L

∑
ℓ

λℓ . (19)

This shows that in CA, each factor extracts a portion of the inertia, with

the first factor extracting the largest portion, the second factor extracting

the largest portion left of the inertia, etc.

5.3 Inertia and the Chi-squared test

Interestingly, the inertia in CA is closely related to the chi-square test

which is traditionally performed on a contingency table in order to test

the independence of the rows and the columns of the table. Under inde-

pendence, the frequency of each cell of the table is proportional to the

product of its row and column marginal probabilities. So, if we denote

by x+,+ the grand total of matrix X, the expected frequency of the cell at

the i-th row and j-th column is denoted Ei,j and computed as:

Ei,j = micjx+,+ . (20)

The chi-squared test statistic, denoted χ2 is computed as the sum of the

squared difference between the actual values and the corresponding ex-

pected values weighted by the expected values:

χ2 = ∑
i,j

(
xi,j − Ei,j

)2

Ei,j
. (21)
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When rows and columns are independent, χ2 follows a chi-squared dis-

tribution with (I − 1)(J − 1) degrees of freedom. Therefore, χ2 can be

used to evaluate the likelihood of the row and columns independence

hypothesis. The statistics χ2 can be rewritten to show its close relation-

ship with the inertia of CA, namely:

χ2 = I × x+,+ = φ2 × x+,+ , (22)

with φ2 = I being a coefficient of effect size associated to chi2 (this

index takes values between 0 and min(I, J)− 1). Equation 22 shows that

CA decomposes—in orthogonal components—the pattern of deviations

to independence.

6 Dual Analysis: the Column Space

In a contingency table, the rows and the columns of the table play a

similar role, and therefore the analysis that was performed on the rows

can also be performed on the columns by exchanging the role of the

rows and the columns. This is illustrated by the analysis of the columns

of matrix X, or equivalently by the rows of the transposed matrix XT.

The matrix of column profiles for XT is called O (like cOlumn), and is

computed as

O = diag

{
XT 1

I × 1

}−1
XT (23)
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The matrix of the column deviations to their barycenter is called Z and

it is computed as:

Z = O−
(

1
I × 1

× mT
)
=


−.0004 −.0126 .0207 −.0143 −.0193 .0259

−.0026 −.0119 −.0227 .0269 .0213 −.0109

.0116 .0756 .0478 −.0787 −.0453 −.0111

 .

(24)

Weights and masses of the column analysis are the inverse of their

equivalent for the row analysis. This implies that the punctuation marks

factor scores are obtained from the GSVD with the constraints imposed

by the two metric matrices Dc (masses for the columns) and D−1
m (weights

for the rows, compare with Equation 11):

Z = U∆VT with: UTDcU = VTD−1
m V = I . (25)

This gives:

Z =


0.3666 −1.4932

−0.7291 0.4907

2.1830 1.2056


︸ ︷︷ ︸

U

×
 .1335 0

0 .0747


︸ ︷︷ ︸

∆

×
 0.0340 0.1977 0.1952 −0.2728 −0.1839 0.0298

0.0188 0.1997 −0.1003 0.0089 0.0925 −0.2195


︸ ︷︷ ︸

VT

. (26)

The factor scores for the punctuation marks are stored in a J = 3 ×

L = 2 matrix denoted G which is computed in the same way F was
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computed (see Equation 13). Specifically, G is computed as:

G = U∆ =


0.0489 −0.1115

−0.0973 0.0367

0.2914 0.0901

 . (27)

6.1 Transition formula: from the rows to the columns and back

A Comparison of Equation 26 and Equation 12, shows that the singu-

lar values are the same for both the row and the column analyses. This

means that the inertia extracted by each factor (i.e., the eigenvalue as-

sociated to this factor, which is also the square of the singular value) is

the same for both analyses. Because the variance extracted by the factors

can be added, to obtain the total inertia of the data table, this also means

that each analysis is decomposing the same inertia which, here, is equal

to:

I = .13352 + .7472 = .0178 + .0056 = 0.0234 . (28)

Also, the generalized singular decomposition of one set (say the col-

umns) can be obtained from the other set (say the rows). For example

the generalized singular vectors of the analysis of the columns can be

computed directly from the analysis from the rows as

U = D−1
c Q . (29)

Combining Equations 29 and 27 shows that the factors for the rows of

Z (i.e., the punctuation marks) can be obtained directly from the singular

value decomposition of the authors matrix (i.e., matrix Y) as

G = U∆ = D−1
c Q∆ . (30)
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Figure 7: Correspondence analysis of six authors (Rousseau. Chateaubriand, Hugo, Zola, Proust, and Gi-
raudoux) described by the way they used three punctuation marks (Comma, Period, and Others).

As a consequence, we can, in fact, find directly the factor scores of the

columns from their profile matrix (i.e., the matrix O), and from the factor

scores of the rows. Specifically, the equation which gives the values of G

from F is

G = OF∆−1 , (31)

and conversely F could be obtained from G as

F = RG∆−1 . (32)

These equations are called “transition formulas from the rows to the col-

umns” (and vice versa) or simply the transition formulas.

6.2 One single GSVD for CA

Because the factor scores obtained for the rows and the columns have

the same variance (i.e., they have the same “scale”), it is possible to plot

them in the same space. This is illustrated in Figure 7. The symmetry of

the rows and the columns in CA is revealed by the possibility of directly
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obtaining the factors scores from one single GSVD. Specifically, let N de-

note the matrix X divided by the sum of all its elements. This matrix—

sometimes called a correspondence matrix—has all elements larger than

or equal to zero and their sum equals to one. The factors scores for the

rows and the columns are obtained from the following GSVD:

(
N − mcT

)
= S∆TT with STD−1

m S = TTD−1
c T = I . (33)

With the decomposition from Equation 33, the factor scores for the

rows (F) and the columns (G) are obtained respectively as

F = D−1
m S∆ and G = D−1

c T∆ . (34)

7 Supplementary elements

Often in CA we want to know the position in the analysis of rows or col-

umns that were not analyzed. These rows or columns are called illustra-

tive or supplementary rows or columns (or supplementary observations

or variables). The appellation ”out of sample” observations or variables

is also sometimes used. By contrast with these supplementary elements

(which are not used to compute the factors) the active elements are those

used to actually compute the factors. Table 2 shows the punctuation data

table with four additional columns giving the detail of the “other punc-

tuation marks” (i.e., the exclamation mark, the interrogation mark, the

semi-colon, and the colon). These punctuation marks were not analyzed

for two reasons: first, these marks are too rare and therefore they would

distort the factor space and, second, the “Other” marks comprises all

these other marks and therefore to analyze them with “Other” would be

redundant. There is also a new author in Table 2: We counted the marks

used by a different author, namely Hervé Abdi in the first chapter of



HERVÉ ABDI 21

Ta
bl

e
2:

N
um

be
r

of
pu

nc
tu

at
io

n
m

ar
ks

us
ed

by
si

x
m

aj
or

Fr
en

ch
au

th
or

s
(fr

om
Br

un
et

,1
98

9)
.T

he
ex

cl
am

at
io

n
po

in
t,

qu
es

tio
n

m
ar

k,
se

m
ic

ol
on

,a
nd

co
lo

n
ar

e
su

pp
le

m
en

ta
ry

co
lu

m
ns

.A
bd

i(
19

94
)C

ha
pt

er
1

is
a

su
pp

le
m

en
ta

ry
ro

w
.N

ot
at

io
ns

x i
+

:s
um

of
th

e
i-

th
ro

w
;x

+
j:

su
m

of
th

e
j-

th
co

lu
m

n;
x +

+
:g

ra
nd

to
ta

l.

A
ct

iv
e

El
em

en
ts

Su
pp

le
m

en
ta

ry
El

em
en

ts

m
Pe

ri
od

C
om

m
a

O
th

er
M

ar
ks

x i
+

x i
+

x +
+

Ex
cl

am
at

io
n

Q
ue

st
io

n
Se

m
ic

ol
on

C
ol

on

R
ou

ss
ea

u
78

36
13

11
2

60
26

26
97

4
.0

18
9

41
3

12
40

34
01

97
2

C
ha

te
au

br
ia

nd
53

65
5

10
23

83
42

41
3

19
84

51
.1

39
3

46
69

45
95

19
35

4
13

79
5

H
ug

o
11

56
15

18
45

41
59

22
6

35
93

82
.2

52
2

19
51

3
98

76
22

58
5

72
52

Z
ol

a
16

19
26

34
04

79
62

75
4

56
51

59
.3

96
6

24
02

5
10

66
5

18
39

1
96

73
Pr

ou
st

38
11

7
10

51
01

12
67

0
15

59
48

.1
09

4
27

56
24

48
38

50
36

16
G

ir
au

do
ux

46
37

1
58

36
7

14
22

9
11

90
37

.0
83

5
58

93
50

42
19

46
14

18

x +
j

42
35

80
80

39
83

19
73

88
14

24
95

1

w
T
=

x +
+

x +
j

3.
36

41
1.

77
24

7.
21

90
x +

+

cT
=

x +
j

x +
+

.2
97

3
.5

64
2

.1
38

5

A
bd

i(
C

ha
pt

er
1)

21
6

13
9

26



22 Correspondence Analysis
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his 1994 book called “Les réseaux de neurones.” This author was not ana-

lyzed because data are available for only one chapter (not his complete

work) and also because this author (despite all his stylistic qualities) is

not, strictly speaking, a literary author.

The values of the projections on the factors for the supplementary

elements are computed from the transition formula. Specifically, a sup-

plementary row is projected into the space defined using the transition

formula for the active rows (cf. Equation 32) and replacing the active row

profiles by the supplementary row profiles. So, if we denote by Rsup the

matrix of the supplementary row profiles, then Fsup—the matrix of the

supplementary row factor scores—is computed as:

Fsup = Rsup × G × ∆−1 . (35)

Table 3 lists the factor scores for the active and supplementary rows. For

example, the factor scores of the author Abdi are computed as

Fsup = RsupG∆−1 =
[

0.0908 −0.5852
]

. (36)

Supplementary columns are projected into the factor space using the

transition formula from the active rows (cf. Equation 31) and replacing

the active column profiles by the supplementary column profiles. So, if

we denote by Osup the supplementary column profile matrix, then Gsup,

the matrix of the supplementary column factor scores, is computed as:

Gsup = OsupF∆−1 . (37)

Table 4 lists the factor scores for the active and supplementary elements

and Figure 8 displays the supplementary columns (i.e., the “Other” punc-

tuation marks) and the supplementary author (Abdi).
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Proust
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Giraudoux

Chateaubriand

Rousseau
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PERIOD

OTHER 

MARKS

Abdi
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2
λ

2
 = 0.01

τ
2
 = 24%

1
λ

1
 = 0.02

τ
1
 = 76%

Figure 8: Correspondence analysis of the punctuation of six authors, Comma, Period, and Others are active
columns; Rousseau. Chateaubriand, Hugo, Zola, Proust, and Giraudoux are active rows; Colon, Semicolon,
Interrogation and Exclamation are supplementary columns; Abdi is a supplementary row.

Figure 8 reveals that the “Other” punctuation mark category com-

prises two distinct groups: 1) the first group includes “Colon” and “Semi-

Colon” which are punctuation marks used more than average by the

early authors; whereas 2) the second group includes “interrogation”

and “exclamation” marks which are punctuation marks used more than

average by Giraudoux (who, as a writer of plays, frequently uses spo-

ken dialogues rich in “interrogation” and “exclamation” marks). Note

that because the four supplementary punctuation marks add up to the

“Other”punctuation mark, the “Other” mark is the barycenter of the

four “Other” marks.
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For the supplementary author, Abdi—whose linguistic corpus origi-

nates from scientific writing—is plotted far from the origin on the nega-

tive side of Dimension 2 because he wrote short sentences (a hallmark of

scientific writing) and therefore used more periods and fewer commas

and other punctuation marks than the average writer.

8 Little Helpers: Contributions and cosines

Contributions and cosines are coefficients whose goal is to facilitate the

interpretation. The contributions identify the important elements for a

given factor, whereas the (squared) cosines identify the factors impor-

tant for a given element. These coefficients express importance as the

proportion of something into a total. The contribution is the ratio of the

weighted squared projection of an element on a factor to the sum of the

weighted projections of all the elements for this factor (which happens

to be the eigenvalue of this factor). The squared cosine is the ratio of the

squared projection of an element onto a factor to the sum of the projec-

tions of this element on all the factors (which happens to be the squared

distance from this point to the barycenter). Contributions and squared

cosines, being proportions, take values between 0 and 1.

The squared cosines, denoted h, between row i and factor ℓ (respec-

tively, between column j and factor ℓ) are obtained as:

hi,ℓ =
f 2
i,ℓ

∑
ℓ

f 2
i,ℓ

=
f 2
i,ℓ

d2
c,i

and hj,ℓ =
g2

j,ℓ

∑
ℓ

f 2
j,ℓ

=
g2

j,ℓ

d2
r,j

. (38)

Squared cosines help locating the factors important for a given observa-

tion. The contributions, denoted b, of row i to factor ℓ and of column j to
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factor ℓ are obtained respectively as:

bi,ℓ =
mi f 2

i,ℓ

∑
i

mi f 2
i,ℓ

=
mi f 2

i,ℓ

λℓ
and bj,ℓ =

cjg2
j,ℓ

∑
j

cj f 2
j,ℓ

=
cig2

j,ℓ

λℓ
. (39)

Contributions help locating the observations important for a given fac-

tor. An often used rule of thumb is to consider that the important con-

tributions are those larger than the average contribution, which is equal

to one divided by the number of elements (i.e., 1
I for the rows and 1

J for

the columns). A dimension is then interpreted by opposing the positive

elements with large contributions to the negative elements with large

contributions. Cosines and contributions for the punctuation example

are given in Tables 3 and 4.

9 Inferences for Correspondence Analysis

CA was first developed as a descriptive multivariate method, but recently

it also started to incorporate some inferential aspects. When CA analyzes

a contingency table, the inertia decomposed by CA is proportional to

χ2 (see Equation 22) and, therefore an independence χ2 statistic with

(I − 1)(J − 1) degrees of freedom implements an omnibus test for CA.

For our example, the value of the independence χ2 is equal to

χ2 = I × x+,+ = 1,424,951 × (.0178 + .0056)

= 1, 424, 951 × 0.0234 = 33,340.15 . (40)

When compared to a χ2 distribution with (6 − 1)(3 − 1) = 10 degrees

of freedom, the value of the χ2 statistic equal to 33,240.15 indicates that

the result is highly significant and that we can confidently conclude that

the authors do differ in how they punctuate (even though the differences
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are quite small as indicated by a value of φ2 = 0.0234 whose maximum

possible value would be equal to 2).

Edmond Malinvaud and Gilbert Saporta extended this χ2 based sta-

tistical approach to test the significativity of the dimensions extracted by

CA. To do so, they defined a χ2-like statistics denoted Q′
ℓ [with ℓ taking

values between 0 and L = min(I, J)− 2] computed as

Q′
ℓ = x+,+

(
L

∑
k=ℓ+1

λk

)
. (41)

Under the same statistical assumptions as the independence χ2, the statis-

tics Q′
ℓ follows a χ2 distribution with ν = (I − ℓ− 1)(J − ℓ− 1). When

ℓ = 0, Q′
0 = χ2 = 33, 340.15 with a number of degrees of freedom equal

to (I − 1)(J − 1) = 10 (see Equation 22) and is identical to the χ2 statis-

tics from Equation 40. The significativity of Dimension 1, is tested by

computing Q′
1 as:

Q′
ℓ = x+,+

(
2

∑
k=1+1

λk

)
= x+,+

(
2

∑
k=2

λk

)

= x+,+ × λ2 = 1, 424, 951 × .0056 = 7, 949.57 (42)

a value distributed as χ2 with ν = (I − ℓ − 1)(J − ℓ − 1) = 4 × 1 =

4 degrees of freedom. Here again, the large value of χ2 indicates that

Dimension 1 is highly significant (even though it describes a small effect

as indicated by the eigenvalue of λ1 = .0178). Note that Q′
ℓ is not defined

for the last dimension of CA.

When the data matrix to be analyzed is not a true contingency ta-

ble, the Q′
ℓ statistic is not distributed as χ2 and therefore this distribu-

tion cannot be derived analytically; So, here, appropriate permutation
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or Monte-Carlo cross-validation approaches need to be implemented to

derive the sampling distribution of Q′
ℓ.

10 Multiple correspondence analysis

CA works with a contingency table which is equivalent to the analysis

of two nominal variables (i.e., one for the rows and one for the columns).

Multiple correspondence analysis (MCA) is an extension of CA which al-

lows the analysis of the pattern of relationship among several nominal

variables. MCA is used to analyze a set of observations described by a

set of nominal variables. Each nominal variable comprises several lev-

els, and each of these levels is coded as a binary variable. For example

gender (F vs. M) is a nominal variable with two levels. The pattern for

a male respondent will be coded as [0 1] and as [1 0] for a female. The

complete data table is composed of binary columns with one and only

one column taking the value “1” per nominal variable.

MCA can also accommodate quantitative variables by recoding them

as “bins.” For example, a score with a range of −5 to +5 could be re-

coded as a nominal variable with three levels: less than 0, equal to 0,

or more than 0. With this schema, a value of 3 will be expressed by the

pattern [0 0 1]. The coding schema of MCA implies that each row has the

same total, which for CA implies that each row has the same mass.

Essentially, MCA is computed by using a CA program on the data ta-

ble. It can be shown that the binary coding scheme used in MCA creates

artificial factors and therefore artificially reduces the inertia explained

by the first factors of the analysis. A solution to this problem is to correct

the eigenvalues obtained from the CA program; note that recent statisti-

cal packages are likely to automatically implement this correction.

Hervé Abdi and Lynne J. Williams
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See also

Barycentric discriminant analysis, Canonical correlation analysis, cat-

egorical variables, Chi-square test, Data mining, Predictive Discrimi-

nant analysis, Exploratory data analysis, Exploratory factor analysis,

Guttman scaling, Matrix algebra, Principal component analysis.
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