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Correspondence Analysis

Hervé Abdi - Lynne J. Williams

1 Introduction

Correspondence analysis (CA) is a generalized principal component analysis tailored for the
analysis of qualitative data. Originally, CA was created to analyze contingency tables, but,
CA is so versatile that it is used with a lot of other data table types.

The goal of correspondence analysis is to transform a data table into two sets of factor
scores: One for the rows and one for the columns. The factor scores give the best represen-
tation of the similarity structure of the rows and the columns of the table. In addition, the
factors scores can be plotted as maps, which display the essential information of the original
table. In these maps, rows and columns are displayed as points whose coordinates are the
factor scores and where the dimensions are called factors. Interestingly, the factor scores of
the rows and the columns have the same variance and, therefore, both rows and columns
can be conveniently represented in one single map.

The modern version of correspondence analysis and its geometric interpretation comes
from 1960s France and is associated with the French school of “data analysis” (analyse des
données) and flourished under the tutelage of Jean-Paul Benzécri (1973, see also Escofier
& Pages, 1998, or Lebart & Fénelon, 1971; a comprehensive English reference is Greenacre,
1984, 2007; see also Weller & Romney, 1990; and Clausen, 1998).

As a technique, it was often discovered (and re-discovered) and so variations of correspon-
dence analysis can be found under several different names such as “dual-scaling,” “optimal
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2 Correspondence Analysis

Table 1: The punctuation marks of six French writers (from Brunet, 1989).

All

Period Comma the other

marks

Rousseau 7836 13112 6026
Chateaubriand 53655 102383 42413
Hugo 115615 184541 59226
Zola 161926 340479 62754
Proust 38177 105101 12670
Giraudoux 46371 58367 14299

scaling,” or “reciprocal averaging,” (see, e.g., Greenacre, 1984; Nishishato, 1994). The multi-
ple identities of correspondence analysis are a consequence of its large number of properties:
It can be defined as an optimal solution for a lot of apparently different problems.

2 Notations

Matrices are denoted with upper case letters typeset in a boldface font, for example X is
a matrix. The elements of a matrix are denoted with a lower case italic font matching the
matrix name with indices indicating the row and column positions of the element, for example
x; ; is the element located at the i-th row and j-th-column of matrix X. Vectors are denoted
with lower case letters typeset in a boldface font, for example c is a vector. The elements of
a vector are denoted with a lower case italic font matching the vector name with an index
indicating the position of the element in the vector, for example ¢; is the i-th element of c.

3 An Example: How writers punctuate

This example comes from Brunet (1989), who analyzed the way punctuation marks were used
by six French writers: Rousseau, Chateaubriand, Hugo, Zola, Proust, and Giraudoux. In the
paper, Brunet gave a table indicating the number of times each of these writers use three
punctuation marks: the period, the comma, and all the other marks (i.e., interrogation mark,
exclamation mark, colon, and semi-colon) grouped together. These data are reproduced in
Table 1. From these data we can build the original data matrix which is denoted X. It has
I =6 rows and J =3 columns and is equal to

[ 7836 13112 6026
53655 102383 42413
X - 115615 184541 59226 (1)

161926 340479 62754 | -
38177105101 12670

| 46371 58367 14299 |

In the matrix X, the rows represent the authors and the columns represent types of punc-
tuation marks. At the intersection of a row and a column, we find the number of a given
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punctuation mark (represented by the column) used by a given author (represented by the
row).

4 Analyzing the rows

Suppose that the focus is on the authors, and that we want to derive a map that reveals the
similarities and differences in punctuation style between authors. In this map, the authors
are points and the distances between authors reflect the proximity of style of the authors.
So, two authors close to each other punctuate in a similar way and two authors who are far
away punctuate differently.

4.1 A first (bad) idea: doing PCA

!

2
Aloz Zola
o e Rousseau Proust

Giraudoux Chateaubfiand Hugo

Figure 1: PCA analysis of the Punctuation. Centered Data. Aloz is a supplementary element. Even though Aloz punctuates the
same way as Zola, Aloz is further away from Zola than any other author. The first dimension explains 98% of the variance. It reflects
mainly the number of punctuation marks produced by the author.

A first idea is to perform a principal component analysis on X. The result is shown in
Figure 1. The plot suggests that the data are quite unidimensional. And, in fact, the first
component of this analysis explains 98% of the inertia. How to interpret this component?
It seems related to the number of punctuation marks produced by each author. This inter-
pretation is supported by creating a fictitious alias for Zola. Suppose that, unbeknown to
most historians of French literature, Zola wrote a small novel under the (rather transparent)
pseudonym of Aloz. In this novel, he kept his usual way of punctuating, but because this is
a short novel, he obviously produced a smaller number of punctuation marks than he did
in his complete euvre. Here is the (row) vector recording the number of occurrences of the
punctuation marks for Aloz:

[2699 5675 1046] . (2)

For ease of comparison, Zola’s row vector is reproduced here:
[161926 340479 62754] . (3)

So Aloz and Zola have the same punctuation style but differ only in their prolixity. A good
analysis should reveal such a similarity of style, but as Figure 1 shows, PCA fails to reveal



4 Correspondence Analysis

this similarity. In this figure, we have projected Aloz (as a supplementary element) in the
analysis of the authors and Aloz is, in fact, further away from Zola than any other author.
This example shows that using PCA to analyze the style of the authors is not a good idea
because a PCA is sensitive mainly to the number of punctuation marks rather than to way
punctuation is used.

Rather than the absolute number, the “style” of the authors, is, in fact, expressed by the
relative frequencies of their use of the punctuation marks. This suggests the data matrix
should be transformed such that each author is described by the proportion of his usage of
the punctuation marks rather than by the number of marks used. The transformed data
matrix is called a row profile matrix. In order to obtain the row profiles, we divide each row
by its sum. This matrix of row profiles is denoted R.. It is computed as:

T 2005 4861 .2234 ]
2704 5159 2137
-1

3217 5135 .1648

} X =1 9865 .6024 .1110 (4)

2448 6739 .0812

3896 .4903 .1201 |

(where diag transforms a vector into a diagonal matrix with the elements of the vector on
the diagonal, and J11 is a J by 1 vector of ones).

The “average writer” would be someone who uses each punctuation mark according to
its proportion in the sample. The profile of this average writer would be the barycenter (also
called centroid, center of mass, or center of gravity) of the matrix. Here, the barycenter of
R is a vector with J = 3 elements, it is denoted c, and computed as

-1
cTz(lxXxl) x 1X =[2973 5642 .1385] . (5)
1x1TI Jx1 1x1T
~ —
Inverse of the total of X Total of the columns of X

If all authors punctuate the same way, they all punctuate like the average writer therefore,
in order to study the differences between authors, we need to analyze the matrix of deviations
to the average writer. This matrix of deviations is denoted as Y and it is computed as:

~.0068 —.0781 .0849
~.0269 —.0483 .0752

o | 0244 0507 0263
Y=R (111 x¢ ) “| -0107 0382 -.0275
~.0525 .1097 —.0573

.0923 —.0739 —.0184

(6)
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4.2 Masses (rows) and weights (columns)

In correspondence analysis, we assign a mass to each row and a weight to each column. The
mass of each row reflects its importance in the sample. In other words, the mass of each row
is the proportion of this row in the total of the table. The masses of the rows are stored in
a vector denoted m, which is computed as

-1
m = ( 1 xXx 1 ) x X1 =[0189.1393 2522 3966 1094 0835]" . (7)
1x1I Jx1 Jx1
—_——
Inverse of the total of X Total of the rows of X

From the vector m we define the matrix of masses as M = diag {m}.

The weight of each column reflects its importance for discriminating between the authors.
So the weight of a column reflects the information this columns provides to the identification
of a given row. Here, the idea is that columns that are used often do not provide much
information, and columns that are used rarely provide much information. A measure of how
often a column is used is given by the proportion of times it is used, which is equal to
the value of this column component of the barycenter. Therefore the weight of a column
is computed as the inverse of this column component of the barycenter. Specifically, if we
denote by w the J by 1 weight vector for the columns, we have:

w = [w;] = [¢;'] (8)

For our example, we obtain:

——| 33641
2973
_ 1
w=[w;] =[] = 7| BT (9)
L L2190
L 13854

From the vector w, we define the matrix of weights as W = diag {w} .

4.3 Generalized singular value decomposition of Y

Now that we have defined all these notations, correspondence analysis boils down to a gen-
eralized singular value decomposition (GSVD, see Abdi, 2007) problem. Specifically, matrix
Y is decomposed using the GSVD under the constraints imposed by the matrices M (masses
for the rows) and W (weights for the columns):

Y=PAQT with: P'MP=Q'WQ-=1. (10)
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And that way we get:

1.7962 0.9919
1.4198 1.4340
Y = 0.7739 -0.3978 ><[.1335 o]x[ 0.1090 —0.4114 0.3024 (11)
-0.6878 0.0223 0 .0747 -0.4439 0.2769 0.1670
-1.6801 0.8450
0.3561 —2.6275

A QT

P

The rows of the matrix X are now represented by their factor scores (which are the
projections of the observations onto the singular vectors). The row factor scores are stored
in an I =3 by L =2 (L stands for the number of non-zero singular values) matrix denoted
F. This matrix is obtained as

[ 02398 0.07417
0.1895 0.1071
0.1033 —0.0297
~0.0918 0.0017
~0.2243 0.0631

| 0.0475 -0.1963 |

A
2

A, =0.01 .
© - 24 | Chateaubriand

Proust
Rousseau
.
Zola Hugo 1
A, =0.02
T, =76%

Giraudoux

Figure 2: Plot of the correspondence analysis of the rows of matrix X. The first two factors of the analysis for the rows are plotted
(i.e., this is the matrix F). Each point represents an author. The variance of each factor score is equal to its eigenvalue.

The variance of the factor scores for a given dimension is equal to the squared singular
value of this dimension (Nota Bene: the variance of the observations is computed taking into
account their masses). Or, equivalently, we say that the variance of the factor scores is equal
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to the eigenvalue of this dimension (i.e., the eigenvalue is the square of the singular value).
This can be checked as follows:

- (13)

[0.13352 o]

00178 0
T _ 2 _
FIME = A"=A = 00.07472 [ ]

0 0.0056

We can display the results by plotting the factor scores as a map where each point
represents a row of the matrix X (i.e., each point represents an author). This is done in
Figure 2. On this map, the first dimension seems to be related to time (the rightmost authors
are earlier authors, the leftmost authors are more recent), with the exception of Giraudoux
who is a very recent author. The second dimension singularizes Giraudoux. These factors will
be easier to understand after we have analyzed the columns. This can be done by analyzing
the matrix X”. Equivalently this can be done by doing what is called the dual analysis.

5 Geometry of the GSVD

CA has a simple geometric interpretation. For example, when a row profile is interpreted
as a vector, it can be represented as a point in a multidimensional space. Because the sum
of a profile is equal to one, row profiles are, in fact points in a J — 1 dimensional space.
Also, because the components of a row profile take value in the interval [0 1], the points
representing these row-profiles can only lay in the subspace whose “extreme points” have
one component equal to one and all other components equal to zero. This subspace is called
a simpler. For example, Figure 3 shows the 2-dimensional simplex corresponding to the
subspace of all possible row profiles with three components. As an illustration, the point
describing Rousseau (with coordinates equal to [.2905 .4861 2234]) is also plotted. For this
particular example, the simplex is an equilateral triangle and, so the three dimensional row
profiles can conveniently be represented as points on this triangle as illustrated in Figure 4a
which shows the simplex of Figure 3 in two dimensions. Figure 4b shows all six authors and
the barycenter.

The weights of the columns, which are used as constrains in the GSVD have also a straight-
forward geometric interpretation. As illustrated in Figure 5, each side of the simplex is
stretched by a quantity equal to the square root of the dimension it represents (we use the
square root because we are interested in squared distances but not in squared weights so
using the square root of the weights insures that the squared distances between authors will
take into account the weight rather than the squared weights).

The masses of the rows are taken into account to find the dimensions. Specifically, the first
factor is computed in order to obtain the maximum possible value of the sum of the masses
times the squared projections of the authors points (i.e., the projections have the largest
possible variance). The second factor is constrained to be orthogonal (taking into account
the masses) to the first one and have the largest variance for the projections. The remaining
factors are computed with similar constraints. Figure 6 shows the stretched simplex, the
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Figure 3: In three dimensions, the simplex is a two dimensional triangle whose vertices are the vectors [1 0 0], [0 1 0] and [0 0 1].
The point describing Rousseau (with coordinates [.2905 .4861 2234]) is also plotted.

author points, and the two factors (note that the origin of the factors is the barycenter of
the authors).

The “stretched simplex” shows the whole space of the possible profiles. Figures 6 shows
that the authors occupy a small portion of the whole space: They do not vary much in the
way they punctuate. Also the “stretched simplex” represents the columns as the vertices of
the simplex: The columns are represented as row profiles with the column component being
one and all the other components being zeros. This representation is called an asymmetric
representation because the rows always have a dispersion smaller than (or equal to) the
columns.

6 Distance, Inertia, Chi-square, and CA

6.1 Chi-squared distances

In cA, the Euclidean distance in the “stretched simplex” is equivalent to a weighted distance
in the original space. For reasons which will be made more clear later, this distance is called
the x? distance. The x? distance between two row profiles 7 and i’ can be computed from
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Figure 4: The simplex as a triangle. a) With Rousseau (compare with Figure 3) b) With all six authors and their barycenter.

Period
imo

% 1Comma

0
|| T ——
Otﬂer Other

Figure 5: Geometric interpretation of the columns weights. Each side of the simplex is stretched by a factor equal to the square
root of the weights.

the factor scores as

L
A}y = (fie- fie)? (14)
¢
or from the row-profiles as

J
d2y = 2wy (rig=rug)” - (15)
J

6.2 Inertia

The variability of the row profiles relative to their barycenter is measured by a quantity—
akin to variance—called inertia and denoted Z. The inertia of the rows to their barycenter
is computed as the weighed sum of the squared distances of the rows to their barycenter. We
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Period
1

:
Other Other

Figure 6: Correspondence analysis: The “stretched simplex’ along with the factorial axes. The projections of the Authors’ point
onto the factorial axes give the factor scores.

denote by d?, the (squared) distance of the i-th row to the barycenter, it is computed as

J L
A=Y w;(rij—c;))? =Y f2 (16)
; 7

where L is the number of factors extracted by the CA of the table, [this number is always
smaller or equal to min(/, J)—-1]. The inertia of the rows to their barycenter is then computed
as

1

The inertia can also be expressed as the sum of the eigenvalues (see Equation 13):

=\ (18)

L

This shows that in CA, each factor extracts a portion of the inertia, with the first factor
extracting the largest portion, the second factor extracting the largest portion left of the
inertia, etc.

6.3 Inertia and the Chi-squared test

Interestingly, the inertia in CA is closely related to the chi-square test. This test is tradition-
ally performed on a contingency table in order to test the independence of the rows and the
columns of the table. Under independence, the frequency of each cell of the table should be
proportional to the product of its row and column marginal probabilities. So if we denote
by z. . the grand total of matrix X, the expected frequency of the cell at the i-th row and
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J-th column is denoted F; ; and computed as:
Ei,j =MmMyCiTy 4+ - (19)

The chi-squared test statistic, denoted x? is computed as the sum of the squared difference
between the actual values and the expected values weighted by the expected values:

Y _Z(J;”E J) (20)

7.7

When rows and columns are independent, x? follows a chi-squared distribution with (/ -
1)(J —1) degrees of freedom. Therefore, x? can be used to evaluate the likelihood of the row
and columns independence hypothesis. The statistics y? can be rewritten to show its close
its relationship with the inertia of CA, namely:

x’=Zz,, . (21)

This shows that cA analyzes—in orthogonal components— the pattern of deviations to
independence.

7 Dual Analysis: The column space

In a contingency table, the rows and the columns of the table play a similar role, and
therefore the analysis that was performed on the rows can also be performed on the columns
by exchanging the role of the rows and the columns. This is illustrated by the analysis of the
columns of matrix X, or equivalently by the rows of the transposed matrix X”. The matrix
of column profiles for X7 is called O (like cOlumn), it is computed as

-1
O-= dlag{XT 1} xT (22)

The matrix of the deviations to the barycenter is called Z and it is computed as:

-.0004 -.0126 .0207 -.0143 -.0193 .0259
Z=0- ( 1 x mT) =|-.0026 -.0119 -.0227 .0269 .0213 -.0109
et 0116 .0756 .0478 -.0787 -.0453 —-.0111

Weights and masses of the columns analysis are the inverse of their equivalent for the
row analysis. This implies that the punctuation marks factor scores are obtained from the
GSVD with the constraints imposed by the two matrices W-! (masses for the rows) and M1
(weights for the columns, compare with Equation 10):
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Z=UAV" with: U'(WHU=V'(M')V=I. (23)

This gives:

0.3666 —1.4932
1
Z = [—0.7291 0.4907} X[ 332 074(;]
2.1830 1.2056 :
—_—
5 A

0.0340 0.1977 0.1952 -0.2728 -0.1839 0.0298 (24)
0.0188 0.1997 —0.1003 0.0089 0.0925 -0.2195 | °

vT

The factor scores for the punctuation marks are stored in a J = 3 x L = 2 matrix called G
which is computed in the same way F was computed (see Equation 12 on page 6). So, G is
computed as:

0.0489 —-0.1115
G=UA=|-0.0973 0.0367 | . (25)
0.2914 0.0901

7.1 Transition formula: from the rows to the columns and back

Comparing Equation 24 with Equation 11, shows that the singular values are the same for
both analyses. This means that the inertia (i.e., the square of the singular value) extracted
by each factor is the same for both analyses. Because the variance extracted by the factors
can be added, to obtain the total inertia of the data table, this also means that each analysis
is decomposing the same inertia which, here, is equal to:

T =.1335% +.747% = .0178 +.0056 = 0.0234 . (26)

Also, the generalized singular decomposition of one set (say the columns) can be obtained
from the other one (say the rows). For example the generalized singular vectors of the analysis
of the columns can be computed directly from the analysis from the rows as

U=WQ . (27)

Combining Equations 27 and 25 shows that the factors for the rows of Z (i.e., the punctu-
ation marks) can be obtained directly from the singular value decomposition of the authors
matrix (i.e., the matrix Y) as

G=WQA . (28)
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As a consequence, we can, in fact, find directly the factor scores of the columns from their
profile matrix (i.e., the matrix O), and from the factor scores of the rows. Specifically, the
equation which gives the values of O from F is

G=0FA™ (29)
and conversely F could be obtained from G as
F=RGA™. (30)

These equations are called “transition formulas from the rows to the columns’ (and vice
versa) or simply the transition formulas.

7.2 One single GSVD for CA

Because the factor scores obtained for the rows and the columns have the same variance (i.e.,
they have the same “scale”), it is possible to plot them in the same space. This is illustrated
in Figure 7. The symmetry of the rows and the columns in CA is revealed by the possibility of
directly obtaining the factors scores from one single GSvD. Specifically, let Dy, (respectively
D.) denote the diagonal matrices with the elements of m (respectively ¢ on the diagonal,
and N denote the matrix X divided by the sum of all its elements. This matrix is called a
stochastic matrix, all its elements are larger than zero and their sum is equal to one. The
factors scores for the rows and the columns are obtained from the following GSVD:

(N-mc")=SAT? with S'DS=T"D.;'T=1I. (31)
The factor scores for the rows (F) and the columns (G) are obtained respectively as

F=D_,SA and G-=D.'TA. (32)

8 Supplementary elements

Often in CA we want to know the position in the analysis of rows or columns that were not
analyzed. These rows or columns are called illustrative or supplementary rows or columns (or
supplementary observations or variables). By contrast with the appellation of supplementary
(which are not used to compute the factors) the active elements are those used to compute
the factors. Table 2 shows the punctuation data table with four additional columns giving
the detail of the “other punctuation marks” (i.e., the exclamation mark, the interrogation
mark, the semi-colon, and the colon). These punctuation marks were not analyzed for two
reasons: first these marks are too rare and therefore they would distort the factor space
and second the “Other” marks comprises all these other marks and therefore to analyze
them with “Other” would be redundant. There is also a new author in Table 2: We counted
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Table 2: Number of punctuation marks used by six major French authors (from Brunet, 1989). The exclamation point, question mark, semicolon, and colon are supplementary columns.
Abdi (1994) Chapter 1 is a supplementary row. Notations x;,: sum of the i-th row; x;: sum of the j-th column; z,,: grand total.

Active Elements

Supplementary Elements

m

Period Comma Other Marks Tis M+++ Exclamation Question Semicolon Colon
Rousseau 7836 13112 6026 26974 .0189 413 1240 3401 972
Chateaubriand 53655 102383 42413 198451 .1393 4669 4595 19354 13795
Hugo 115615 184541 59226 359382 .2522 19513 9876 22585 7252
Zola 161926 340479 62754 565159 .3966 24025 10665 18391 9673
Proust 38117 105101 12670 155948 .1094 2756 2448 3850 3616
Giraudoux 46371 58367 14229 119037 .0835 5893 5042 1946 1418
Tij 423580 803983 197388 1424951
wl = wﬂ 3.3641 1.7724 7.2190 Tois
cT =2 2973 .5642 1385
Abdi (Chapter 1) 216 139 26
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Table 4: Factor scores, contributions, and cosines for the columns. Negative contributions are shown in italic. Exclamation mark, question mark, semicolon, and colon are supplementary
columns.

Axis A %  Period Comma Other Marks Exclamation Question Semicolon  Colon

Factor Scores

1 0178 76 -0.0489  0.0973 -0.2914 -0.0596 -0.1991 -0.4695 -0.4008
2 0056 24 0.1115 -0.0367 -0.0901 0.2318 0.2082 -0.2976 -0.4740
Contributions
1 0.0399  0.2999 0.6601 - - - -
2 0.6628  0.1359 0.2014 — - - -
Cosines
1 0.1614  0.8758 0.9128 0.0621 0.4776 0.7133 0.4170
2 0.8386  0.1242 0.0872 0.9379 0.5224 0.2867 0.5830

Squared Distances to Grand Barycenter
- - 0.0148  0.0108 0.0930 0.0573 0.0830 0.3090  0.3853
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Figure 7: Correspondence analysis of the punctuation of six authors, Comma, Period, and Others are active columns; Rousseau.
Chateaubriand, Hugo, Zola, Proust, and Giraudoux are active rows; Colon, Semicolon, Interrogation and Exclamation are supplementary
columns; Abdi is a supplementary row.

the marks used by a different author, namely Hervé Abdi in the first chapter of his 1994
book called “Les réseaux de neurones.” This author was not analyzed because the data are
available for only one chapter (not his complete work) and also because this author is not a
literary author.

The values of the projections on the factors for the supplementary elements are computed
from the transition formula. Specifically, a supplementary row is projected into the space
defined using the transition formula for the active rows (c¢f. Equation 30) and replacing the
active row profiles by the supplementary row profiles. So, if we denote by Ry, the matrix
of the supplementary row profiles, then Fg,,—the matrix of the supplementary row factor
scores—is computed as:

Fop=RapxGx A", (33)
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For example, the factor scores of the author Abdi is computed as

Foup = Ry GA™ =0.0908 -0.5852] . (34)

Supplementary columns are projected into the factor space using the transition formula
from the active rows (c¢f. Equation 29) and replacing the active column profiles by the sup-
plementary column profiles. If we denote by Og,,, the supplementary column profile matrix,
then Ggyp, the matrix of the supplementary column factor scores, is computed as:

Gaup = Oy FA™ . (35)

Table 4 gives the factor scores for the supplementary elements.

9 Little Helpers: Contributions and cosines

Contributions and cosines are coefficients whose goal is to facilitate the interpretation. The
contributions identify the important elements for a given factor, whereas the (squared)
cosines identify the factors important for a given element. These coefficients express im-
portance as the proportion of something into a total. The contribution is the ratio of the
weighted squared projection of an element on a factor by the sum of the weighted projections
of all the elements for this factor (which happens to be the eigenvalue of this factor). The
squared cosine is the ratio of the squared projection of an element on a factor by the sum of
the projections of this element on all the factors (which happens to be the squared distance
from this point to the barycenter). Contributions and squared cosines are proportions that
vary between 0 and 1.

The squared cosines, denoted h, between row i and factor ¢ (respectively and column j
and factor ¢) are obtained as:
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Squared cosines help locating the factors important for a given observation. The contribu-
tions, denoted b, of row 7 to factor ¢ and of column j to factor ¢ are obtained respectively
as:
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Contributions help locating the observations important for a given factor. An often used
rule of thumb is to consider that the important contributions are larger than the average
contribution, which is equal to the number of elements (i.e., % for the rows and % for the
columns). A dimension is then interpreted by opposing the positive elements with large
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contributions to the negative elements with large contributions. Cosines and contributions
for the punctuation example are given in Tables 3 and 4.

10 Multiple correspondence analysis

Correspondence analysis works with a contingency table which is equivalent to the analysis
of two nominal variables (i.e., one for the rows and one for the columns). Multiple corre-
spondence analysis (MCA) is an extension of CA which allows the analysis of the pattern of
relationship among several nominal variables. MCA is used to analyze a set of observations
described by a set of nominal variables. Fach nominal variable is comprised of several levels,
and each of these levels is coded as a binary variable. For example gender (F vs. M) is a
nominal variable with two levels. The pattern for a male respondent will be [0 1] and [1 0]
for a female. The complete data table is composed of binary columns with one and only one
column taking the value “1” per nominal variable.

McA can also accommodate quantitative variables by recoding them as “bins.” For ex-
ample, a score with a range of =5 to +5 could be recoded as a nominal variable with three
levels: less than 0, equal to 0, or more than 0. With this schema, a value of 3 will be expressed
by the pattern 0 0 1. The coding schema of MCA implies that each row has the same total,
which for CA implies that each row has the same mass.

Essentially, MCA is computed by using a CA program on the data table. It can be shown
that the binary coding scheme used in MCA create artificial factors and therefore artificially
reduces the inertia explained the first factors of the analysis. A solution for this problem is
to correct the eigenvalues obtained from the CA program (see Greenacre, 2007; Greenacre &
Blasius, 2006; Abdi, 2007).

Related entries

Barycentric discriminant analyis (BADIA), Canonical correlation analysis, categorical vari-
ables, Chi-square test, Coefficient alpha (Cronbach’s alpha), Data mining, Descriptive dis-
criminant analysis, Discriminant analysis, Exploratory data analysis, Exploratory factor
analysis, Guttman scaling, Matrix algebra, Principal component analysis, R.

Further readings

1. Abdi, H. (2003). Multivariate analysis. In M. Lewis-Beck, A. Bryman, & T. Futing (Eds): Encyclopedia for research methods
for the social sciences. Thousand Oaks: Sage.



20 Correspondence Analysis

13.

14.
15.

. Abdi, H. (2007a). Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD). In N.J.
Salkind (Ed.): Encyclopedia of measurement and statistics. Thousand Oaks (CA): Sage. pp. 907-912.

Abdi, H. (2007b). Distance. In N.J. Salkind (Ed.): Encyclopedia of measurement and statistics. Thousand Oaks (CA): Sage.
pp. 280-284.

Abdi, H. (2007c). Discriminant correspondence analysis. In N.J. Salkind (Ed.): Encyclopedia of measurement and statistics.
Thousand Oaks (CA): Sage. pp. 270-275.

Abdi, H., & Valentin, D. (2007). Multiple correspondence analysis. In N.J. Salkind (Ed.): Encyclopedia of measurement and
statistics. Thousand Oaks (CA): Sage. pp. 651-657.

Benzécri, J.P. (1973). L’analyse des données (2 vol.). Paris: Dunod

Brunet, E. (1989). Faut-il pondérer les données linguistiques. CUMFID, 16, 39-50.

Clausen, S.E. (1998). Applied correspondence analysis. Thousand Oaks (CA): Sage.

Escofier, B., & Pages, J. (1998). Analyses factorielles simples et multiples. Paris: Dunod.

Greenacre, M.J. (1984). Theory and applications of correspondence analysis. London: Academic Press.

. Greenacre, M.J. (2007). Correspondence analysis in practice (2nd Edition). Boca Raton (FL): Chapman & Hall/CRC.

. Greenacre, M.J. & Blasius, J. (Eds.) (2007). Multiple correspondence analysis and related methods. Boca Raton (FL): Chap-
man & Hall/CRC.

Hwang, H., Tomiuk, M. A., & Takane, Y. (in press). Correspondence analysis, multiple correspondence analysis and recent
developments. In R. Millsap & A. Maydeu-Olivares (Eds.). Handbook of quantitative methods in psychology. London: Sage
Publications. pp.

Lebart, L, & Fénelon, J.P. (1971). Statistiques et informatique appliquées. Paris: Dunod.

Weller S.C., & Romney, A.K. (1990). Metric scaling: Correspondence analysis. Thousand Oaks (CA): Sage.



