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The Greenhouse-Geisser Correction

Hervé Abdi

1 Overview and background

When performing an analysis of variance with a one factor repeated
measurement design, the effect of the independent variable is tested
by computing an F statistic which is computed as the ratio of the of
mean square of effect by the mean square of the interaction between
the subject factor and the independent variable. For a design with S
subjects and A experimental treatments, when some assumptions are
met, the sampling distribution of this F ratio is a Fisher distribution
with ν1 = A− 1 and ν2 = (A− 1)(S − 1) degrees of freedom.

In addition to the usual assumptions of normality of the error
and homogeneity of variance, the F test for repeated measurement
designs assumes a condition called “sphericity.” (Huynh & Feldt,
1970; Rouanet & Lépine, 1970). Intuitively, this condition indicates
that the ranking of the subjects does not change across experimental
treatment. This is equivalent to stating that the population correla-
tion (computed form the subjects’ scores) between two treatments
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Table 1: A data set for a repeated measurement design.

a1 a2 a3 a4 M.s

S1 76 64 34 26 50

S2 60 48 46 30 46

S3 58 34 32 28 38

S4 46 46 32 28 38

S5 30 18 36 28 28

Ma. 54 42 36 28 M.. = 40

is the same for all pairs of treatments. This condition implies that
there is no interaction between the subject factor and the treatment.

If the sphericity assumption is not valid, then the F test becomes
too liberal (i.e., the proportion of rejections of the null hypothesis is
larger than the α level when the null hypothesis is true). In order to
minimize this problem, Greenhouse and Geisser (1959) elaborating
on early work by Box (1954) suggested to use an index of deviation
to sphericity to correct the number of degrees of freedom of the F
distribution. We first present this index of non sphericity (called the
Box index, denoted ε), then we present its estimation and its appli-
cation known as the Greenhouse-Geisser correction. We also present
the Huyhn-Feldt correction which is a more efficient procedure. Fi-
nally, we explore tests for sphericity.

2 An index of sphericity

Box (1954a & b) has suggested a measure for sphericity denoted
ε which varies between 0 and 1 and reaches the value of 1 when
the data are perfectly spherical. We will illustrate the computation
of this index with the fictitious example given in Table 1 where
we collected the data from S = 5 subjects whose responses were
measured for A = 4 different treatments. The standard analysis of
variance of these data gives a value of FA = 600

112
= 5.36, which, with

ν1 = 3 and ν2 = 12, has a p value of .018.
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Table 2: The covariance matrix for the data set of Table 1.

a1 a2 a3 a4

a1 294 258 8 −8

a2 258 294 8 −8

a3 8 8 34 6

a4 −8 −8 6 2

ta. 138 138 14 −2 t.. = 72

t̄a. − t̄.. 66 66 −58 −74

In order to evaluate the degree of sphericity (or lack thereof), the
first step is to create a table called a covariance matrix. This matrix
comprises the variances of all treatments and all the covariances
between treatments. As an illustration, the covariance matrix for
our example is is given in Table 2.

Box (1954) defined an index of sphericity, denoted ε, which applies
to a population covariance matrix. If we call ζa,a′ the entries of this
A× A table, the Box index of sphericity is obtained as

ε =

(∑
a

ζa,a

)2

(A− 1)
∑
a,a′

ζ2a,a′
. (1)

Box also showed that when sphericity fails, the number of de-
grees of freedom of the FA ratio depends directly upon the de-
gree of sphericity (i.e., ε) and are equal to ν1 = ε(A − 1) and
ν1 = ε(A− 1)(S − 1).

2.1 Greenhouse-Geisser correction

Box’s approach works for the population covariance matrix, but, un-
fortunately, in general this matrix is not known. In order to estimate
ε we need to transform the sample covariance matrix into an esti-
mate of the population covariance matrix. In order to compute this
estimate, we denote by ta,a′ the sample estimate of the covariance
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between groups a and a′ (these values are given in Table 2), by ta.
the mean of the covariances for group a and by t.. the grand mean
of the covariance table. The estimation of the population covariance
matrix will have for general term sa,a′ which is computed as

sa,a′ = (ta,a′ − t..)− (ta,.− t..)− (ta′,.− t..) = ta,a′ − ta,.− ta′,.+ t.. . (2)

(this procedure is called “double-centering”).

Table 3 gives the double centered covariance matrix. From this
matrix, we can compute the estimate of ε which is denoted ε̂ (com-
pare with Equation 1):

ε̂ =

(∑
a

sa,a

)2

(A− 1)
∑
a,a′

s2a,a′
. (3)

In our example, this formula gives:

ε̂ =
(90 + 90 + 78 + 78)2

(4− 1) (902 + 542 + · · ·+ 662 + 782)2
=

3362

3× 84, 384
=

112, 896

253, 152

= .4460 . (4)

We use the value of ε̂ = .4460 to correct the number of degrees
of freedom of FA as ν1 = ε̂(A − 1) = 1.34 and ν2 = ε̂(A − 1)(S −
1) = 5.35. These corrected values of ν1 and ν2 give for FA = 5.36 a
probability of p = .059. If we want to use the critical value approach,
we need to round the values of these corrected degree of freedom to
the nearest integer (which will give here the values of ν1 = 1 and
ν2 = 5).

2.2 Greenhouse-Geisser Correction and eigenvalues

The Box index of sphericity is best understood in relation to the
eigenvalues (see, e.g., Abdi, 2007 for an introduction) of a covari-
ance matrix. Recall that covariance matrices belong to the class of
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Table 3: The double centered covariance matrix used to estimate the population covariance matrix.

a1 a2 a3 a4

a1 90 54 −72 −72

a2 54 90 −72 −72

a3 −72 −72 78 66

a4 −72 −72 66 78

positive semi-definite matrices and therefore always has positive of
null eigenvalues. Specifically, if we denote by Σ a population covari-
ance, and by λℓ the ℓ-th eigenvalue of Σ, The sphericity condition
is equivalent to having all eigenvalues equal to a constant. Formally,
the shericity condition states that:

λℓ = constant ∀ℓ . (5)

In addition, if we denote by V (also called β, see Abdi 2007; or ν,
see Worsley & Friston, 1995) the following index:

V =

(∑
λℓ

)2
∑

λ2
ℓ

. (6)

then the Box coefficient can be expressed as

ε =
1

A− 1
V , (7)

Under sphericity, all the eigenvalues are equal and V is equal to
(A − 1). The estimate of ε is obtained by using the eigenvalues of
the estimated covariance matrix. For example, the matrix from Table
3, has the following eigenvalues:

λ1 = 288, λ2 = 36, λ3 = 12 . (8)

This gives:

V =

(∑
λℓ

)2
∑

λ2
ℓ

=
(288 + 36 + 12)2

2882 + 362 + 122
≈ 1.3379 , (9)
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which, in turn, gives

ε̂ =
1

A− 1
V =

1.3379

3
≈ .4460 (10)

(this matches the results of Equation 4).

2.3 Extreme Greenhouse-Geisser correction

A conservative (i.e., increasing the risk of Type II error: the proba-
bility of not rejecting the null hypothesis when it is false) correction
for sphericity has been suggested by Greenhouse and Geisser (1959).
Their idea is to choose the largest possible value of ε̂, which is equal
to A − 1. This leads to consider that FA follows a Fisher distribu-
tion with ν1 = 1 and ν2 = S − 1 degrees of freedom. In this case,
these corrected values of ν1 = 1 and ν2 = 4 give for FA = 5.36 a
probability of p = .081.

2.4 Huynh-Feldt correction

Huynh and Feldt (1976) suggested a better (more powerful) approx-
imation for ε denoted ε̃ and computed as

ε̃ =
S(A− 1)ε̂− 2

(A− 1) [S − 1− (A− 1)ε̂]
. (11)

In our example, this formula gives:

ε̃ =
5(4− 1).4460− 2

(4− 1) [5− 1− (4− 1).4460]
= .5872 .

We use the value of ε̃ = .5872 to correct the number of degrees of
freedom of FA as ν1 = ε̃(A− 1) = 1.76 and ν2 = ε̃(A− 1)(S − 1) =
7.04. These corrected values of give for FA = 5.36 a probability of
p = .041. If we want to use the critical value approach, we need to
round these corrected values for the number of degree of freedom
to the nearest integer (which will give here the values of ν1 = 2



HERVÉ ABDI 7

and ν2 = 7). In general, the correction of Huynh and Feldt is to be
preferred because it is more powerful (and Greenhouse-Geisser is too
conservative).

2.5 Stepwise Strategy for sphericity

Greenhouse and Geisser (1959) suggest to use a stepwise strategy
for the implementation of the correction for lack of sphericity. If FA

is not significant with the standard degrees of freedom. there is no
need to implement a correction (because it will make it even less
significant). If FA is significant with the extreme correction [i.e.,
with ν1 = 1 and ν2 = (S−1)], then there is no need to correct either
(because the correction will make it more significant). If FA is not
significant with the extreme correction but is not significant with
the standard number of degree of freedom, then use the ε correction
(they recommend using ε̂, but the subsequent ε̃ is a better estimate
and should be preferred).

3 Testing for sphericity

One incidental question about using a correction for lack of sphericity
is to decide when a sample covariance matrix is not spherical. There
are several tests that can be used to answer this question. The most
well known is Mauchly’s test, the most powerful is John, Nagao and
Suguiara’s test.

3.1 Mauchly’s test for sphericity

Mauchly (1940) constructed a test for sphericity based on the follow-
ing statistics which uses the eigenvalues of the estimated covariance
matrix

W =

∏
λℓ[

1
A−1

∑
λℓ

]A−1)
. (12)
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This statistics varies between 0 and 1 and reaches 1 when the matrix
is spherical. For our example, we find that

W =

∏
λℓ[

1
A−1

∑
λℓ

]A−1)
=

228× 36× 12[
1
3
(228 + 36 + 12)

]3 =
124, 416

1, 404, 928
≈ .0886. .

(13)
Tables for the critical values of W are available in Nagarsenker and
Pillai (1973), but a good approximation (Pillai & Nagarsenker, 1971)
is obtained by transforming W into

X2
W = −(1− f)× (S − 1)× ln{W} (14)

where

f =
2(A− 1)2 + A+ 2

6(A− 1)(S − 1)
. (15)

Under the null hypothesis of sphericity, X2
W is approximately dis-

tributed as a χ2 with degrees of freedom equal to

ν =
1

2
A(A− 1) . (16)

For our example, we find that

f =
2(A− 1)2 + A+ 2

6(A− 1)(S − 1)
= 2× 32 + 4 + 26× 3× 4 =

24

72
= .33 ,

(17)
and

X2
W = −(1−f)×(S−1)× ln{W} = −4(1− .33)× ln{.0886} ≈ 6.46 .

(18)
with ν = 1

2
4 × 3 = 6, we find that p = .38 and we cannot re-

ject the null hypothesis. Despite its relative popularity, the Mauchly
test is not recommended because it lacks power (see Boik, 1981; Cor-
nell, Young, Seaman, & Kirk, 1992; Keselman, Algina, & Kowalchuk,
2001). A more powerful alternatice is the John, Suguira & Nagao test
for sphericity described below.

3.2 John, Nagao & Sugiura’s test for sphericity

According to Cornell, Young, Seaman, and Kirk, (1992) the best
test for sphericity uses V (John, 1972; Nagao, 1973; Suguira, 1972).
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Tables for the critical values of W are available in Grieve (1984), but
a good approximation (Suguira, 1972) is obtained by transforming
V into

X2
V =

1

2
S(A− 1)2

(
V − 1

A− 1

)
. (19)

Under the null hypothesis, X2
V is approximately distributed as a χ2

distribution with ν = 1
2
A(A− 1)− 1. For our example, we find that

X2
V =

1

2
S(A− 1)2

(
V − 1

A− 1

)
=

5× 32

2

(
1.3379− 1

3

)
= 22.60 .

(20)
with ν = 1

2
4 × 3 − 1 = 5, we find that p = .004 and we can reject

the null hypothesis with the usual test. The discrepancy between the
conclusions reached from the two tests for sphericity illustrates the
lack of power of Mauchly’s test.
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