MATRIX ALGEBRA

Herve Abdi*

James Joseph Sylvester developed the modern concept of matrices in the 19th century. For him
a matrix was simply an array of numbers. He worked with systems of linear equations and so
matrices provided a convenient way of working with the coefficients of these linear equations.
In the process, matrix algebra was created to generalize number operations to set of numbers
called matrices. Nowadays, matrix algebra is used in all branches of mathematics and the

sciences and constitutes the basis of most statistical procedures.

Matrices: Definition

A matrix is a set of numbers arranged in a table. For example, Toto, Marius, and Olivette are
looking at their possessions, and they are counting how many balls, cars, coins, and novels they
each possess. Toto has 2 balls, 5 cars, 10 coins, and 20 novels. Marius has 1, 2, 3, and 4, and
Olivette has 6, 1, 3, and 10. These data can be displayed in a table in which each row represents

a person and each column a possession:

Person Balls Cars Coins Novels
Toto 2 5 10 20
Marius 1 2 3 4
Olivette 6 1 3 10

We can also say that these data are described by the matrix denoted A equal to

2 510 20
A=1 2 3 4 Q)
6 1 3 10
Matrices are denoted by boldface uppercase letters.

To identify a specific element of a matrix, we use its row and column numbers. For
example, the cell defined by Row 3 and Column 1 contains the value 6: We write that a3;1 = 6.

With this notation, elements of a matrix are denoted with the same letter as the matrix but
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written in lowercase italic. The first subscript always gives the row number of the element (i.e.,
3), and second subscript always gives its column number (i.e., 1).

A generic element of a matrix is identified with indices such as i andj. So, a;; is the element
at the ith row and jth column of A. The fotal number of rows and columns is denoted with the
same letters as the indices but in uppercase letters. The matrix A has / rows (here / = 3) and J
columns (hereJ =4), and itis made of / X Jelements ai,(here 3 X 4 =12). The term “dimensions”
is often used to refer to the number of rows and columns, so A has dimensions / by J.

As a shortcut, a matrix can be represented by its generic element written in brackets. So,

the matrix A with / rows and J columns is denoted

A=[a]
a4, 4, a, a
a,, Gy, a, ; a,
= (2
a, G, v 4ttt Gy
|4, 4y, a;; a.s |

For either convenience or clarity, the number of rows and columns can also be indicated as

subscripts below the matrix name:

A=A =[a ]. 3)

IxJ LJ

Vectors

A matrix with one column is called a column vector or simply a vector. Vectors are denoted
with bold lowercase letters. For example, the first column of matrix A (of Equation 1) is a
column vector that stores the number of balls of Toto, Marius, and Olivette. We can call it b
(for balls), and so

2

b=|1 (4)
6

Vectors are the building blocks of matrices. For example, A (of Equation 1) is made of four

column vectors, which represent the number of balls, cars, coins, and novels, respectively.

Norm of a Vector



We can associate to a vector a quantity, related to its variance and standard deviation, called
the norm or length. The norm of a vector is the square root of the sum of squares of the
elements. It is denoted by putting the name of the vector between a set of double bars (||). For

example, for

(5)

»
|
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we find

HXH:\/22—|—12—|—22:\/4+1—|— =v9=3 (6)

Normalization of a Vector

A vector is normalized when its norm is equal to 1. To normalize a vector, we divide each of

its elements by its norm. For example, vector x from Equation 5 is transformed into the

normalized vector x as
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Operations for Matrices

Transposition

If we exchange the roles of the rows and the columns of a matrix, we franspose it. This
operation is called the transposition, and the new matrix is called a transposed matrix. The A

matrix transposed is denoted AT. For example:

2510 20
A= A=|1 2 3 4 | then
1613 10
216
T
AT A |5 2!
4x3 |10 3 3

20 4 10



Addition of Matrices

When two matrices have the same dimensions, we compute their sum by adding the

corresponding elements. For example, with

3
3 4 56
B= {2 4 6 8], 9
1 2 35
we find that
2+3 5+4 10+5 20+6
A+B=[1+2 2+4 3+6 4+8
6+1 1+2 3+3 1045
59 26
=|3 6 9 12 |. (10)
7 3 15

In general

a,+ bl,lal,z + b1,2 dy +b1,j el +b1,J
a, + bz,laz,z + bz,z rdy + b2,j g + bz,J

A+B=|’ : K 5 T (1)

a,+ bi,lai,Z + bi,Z et bi,j et bi,J

KA +bpa, b, a,  +byay bI,J_
Matrix addition behaves very much like usual addition. Specifically, matrix addition is

commutative (i.e., A + B=B + A) and associative (i.e., A+ [B+ C] =[A + B] + C).

Multiplication of a Matrix by a Scalar

To differentiate matrices from the usual numbers, we call usual numbers scalar numbers or
simply scalars. To multiply a matrix by a scalar, we multiply each element of the matrix by

this scalar. For example



34 56
10xB =10x[2 4 6 8 12)

1 2 35

30 40 50 60

=20 40 60 80

10 20 30 50

Multiplication: Product or Products?

There are several ways of generalizing the concept of product or multiplication to matrices.
We will look at the most frequently used of these matrix products. Each of these products will

behave like the product between scalars when the matrices have dimensions 1x1.

Hadamard Product

When generalizing product to matrices, the first approach is to multiply the corresponding
elements of the two matrices that we want to multiply. This is called the Hadamard product,
denoted by (©. The Hadamard product exists only for matrices with the same dimensions.

Formally, it is defined as shown below:
AQOB=a;;Xb;]

_al’l X bl'lal'z X b1,2 b aljj X bl,j eee al,] X le T
A1 X by1G5 X Dyp Ay X byjray; X by

ai’l X bi,lai,z X bi,Z ai‘j X bl,j ai‘] X bi,]

For example, with

3 4 56
B=|2 4 6 8, (14)
1 2 35

we get

2x3 5x4 10x5 20x6 6 20 50 120
AOB=|1x2 2x2 3x6 4x8| =12 4 18 32| . (15)
6x1 1x1 3x3 10x5H 6 1 9 50



Standard or Cayley Product

The Hadamard product is straightforward, but it is not the matrix product that is used most
often. The product most often used is called the standard or Cayley product, or simply the
product (i.e., when the name of the product is not specified, it is the standard product). The
definition of the Cayley product comes from the original use of matrices to solve equations. Its
definition looks surprising at first because it is defined only when the number of columns of
the first matrix is equal to the number of rows of the second matrix. When two matrices can be
multiplied together, they are called conformable. This product will have the number of rows of
the first matrix and the number of columns of the second matrix.

So, A with / rows and J columns can be multiplied by B with J rows and K columns to give
C with / rows and K columns. A convenient way of checking that two matrices are conformable

is to write the dimensions of the matrices as subscripts. For example

AxB=C, (16)

IxJ JxK IxK
or even

IéJJ:XBK = I><CK (17)

An element ¢; rof matrix C is computed ass computed as

J
C.=2.a,%b,,. (18)
Jj=1
So, ci« is the sum of J terms, each term being the product of the corresponding element of the
ith row of A with the Ath column of B.

For example, let

12
123
A= and B=|34|. (19)
455
56

The product of these matrices is denoted C = A x B = AB (the x sign can be omitted when the
context is clear). To compute c2,1 we add three terms: (1) the product of the first element of the
second row of A (i.e., 4) with the first element of the first column of B (i.e., 1); (2) the product
of the second element of the second row of A (i.e., 5) with the second element of the first
column of B (i.e., 3); and (3) the product of the third element of the second row of A (i.e., 5)

with the third element of the first column of B (i.e., 5). Formally, the term 2,1 is obtained as



—1

J
= (az,l) X (bl,l) + (az,z x bz,l) + (a2,3 X b3,1)

=(4x1)+(5%3)+(6x5)
=49, (20)
Matrix C is obtained as
AB = C = [Ci,k]

O Ix14+2x34+3%x5 1x24+2x4+3x%x6
T 4x145%x34+6%xH 4x24+5x4+6x%x6

-[i & 2

Properties of the Product

Like the product between scalars, the product between matrices is associative, and distributive
relative to addition. Specifically, for any set of three conformable matrices A, B, and C:
(AB)C =A(BC)=ABC (associativity) (22)
AB+C)=AB+AC (distributivity). (23)

The matrix products AB and BA do not always exist, but when they do, these products are

not, in general, commutative. so:

AB = BA. (24)

{2 1} {1 —1}

A= and B = (25)

—2-1 22
{2 1“1 —1} [0 o}

AB= = . (26)
-2 —1||[=2 2] |00
{1 —1} { 2 1} [ 4 2}

BA = = . (27)
-2 2|2 -1] |-8 -4

Incidentally, we can combine transposition and product and get the following equation:

For example, with

we get:

But



(AB)" = B'A". (28)
Exotic Product: Kronecker

Another product is the Kronecker product, also called the direct, tensor, or Zehfuss product. It
is denoted ® and is defined for all matrices. Specifically, with two matrices A = [a;;] (with
dimensions / by J) and B = [bi;] (with dimensions K and L), the Kronecker product gives a
matrix C, with dimensions (/xK) by (JxL), defined as

a,B a,B - a B - a B

5]

a,B a,,B - a, B - a B

A®B|’ : Lo o . (29)
B a,B - a B - a B

i,] i,J

B a,B--- a B - a ;B

For example, with

6 7
A=[12 3]andB=[8 9} (30)

we get

1x8 1x9 2x8 2x9 3x8 3x9
{6 7 12 14 18 21}

1x6 1x7 2x6 2x7 3x6 3x7
A®B:[ }

(€Y
89 16 18 24 27
The Kronecker product is used to write design matrices. It is an essential tool for the

derivation of expected values and sampling distributions.

Special Matrices
Certain special matrices have specific names.

Square and Rectangular Matrices

A matrix with the same number of rows and columns is a square matrix. By contrast, a matrix

with different numbers of rows and columns is a rectangular matrix. So



1 2 3
A=|4 5 5 (32)
78 0
is a square matrix, but
12
B=(45 (33)
78
is a rectangular matrix.
Symmetric Matrix
A square matrix A with g, c=a, is symmetric. So
10 2 3
A=|2 20 5 (34)
3 5 30
is symmetric, but
12 2 3
A=[4 20 5395
7 8 30
is not.
Note that for a symmetric matrix,
A= A" (36)

A common mistake is to assume that the standard product of two symmetric matrices is

commutative. But this is not true, as shown by the following example. With

123 112
A=[214|andB=|11 3 (37)
341 231
we get
9 12 11 9 11 9
AB=|1115 11|, butBA=[121510|.  (38)
9 10 19 1111 19

Note, however, that combining Equations 35 and 43 gives for symmetric matrices A and B

the following equation:



AB=(BA)". (39)
Diagonal Matrix

A square matrix is diagonal when all its elements are zero except the elements on the diagonal.

Formally, a matrix is diagonal if a.,=0 when j # j. Thus

10 0 0
A=|0 20 0 |isdiagonal. (40)
0 030
Because only the diagonal elements matter for a diagonal matrix, we can specify only these

diagonal elements. This is done with the following notation:

A= diag{[aljl, eyl ]}
= diag{[ai’i]}. (41)

For example, the previous matrix can be rewritten as:

10 0 0
A=[0 20 0 |=diag{[10,20,30]}. (42)
0 0 30
The operator diag can also be used to isolate the diagonal of any square matrix. For

example, with

123
A=|456 (43)
789
we get
123 1
diag{A}=diagi|4 5 6[;=|5|. (44
789 9
Note, incidentally, that
100
diag{diag{A}}=| 05 0|. (45)
009

Multiplication by a Diagonal Matrix

10



Diagonal matrices are often used to multiply by a scalar all the elements of a given row or
column. Specifically, when we premultiply a matrix by a diagonal matrix, the elements of the
row of the second matrix are multiplied by the corresponding diagonal element. Likewise,
when we postmultiply a matrix by a diagonal matrix, the elements of the column of the first

matrix are multiplied by the corresponding diagonal element. For example, with:

200

123 20
45 6 0 5
006
we get
201|123 2 4 6
BA = X = (47)
0 5] (456 2025 30
and
200
123 2 8 18
AC= x|0 40 |= (48)
45 6 8 20 36
006
and also
200
201123 4 16 36
BAC= X x|04 0|= . (49)
0 5] (456 40 100 180
006
Identity Matrix

A diagonal matrix whose diagonal elements are all equal to 1 is called an identity matrix and

is denoted I. If we need to specify its dimensions, we use subscripts such as, for example:

100
3I3 =I=|0 1 0 |(thisisa3x3identity matrix). (50)
001
The identity matrix is the neutral element for the standard product. So

IxA=AxI=A (51)
for any matrix A conformable with I. For example:

11



100 123
010(|x{455]|=
0 01 780

123]100] [123
455|x010|=455 . (52)
78 0/ (001|780

Matrix Full of Ones
A matrix whose elements are all equal to 1 is denoted by 1 or, when we need to specify its

. . ... 1
dimensions by writing, for example: 7 x ..

These matrices are neutral elements for the Hadamard product. So

A(Dl—123O111 (53)
2723 |45 6] [111
Ix1 2x1 3x1 12 3
= = . (54)
4x1 5x1 6x1 45 6
The 1 matrices or vectors can also be used to compute sums of rows or columns:
1
[12 3]x[1|=(1xD)+(2x1)+(3x1)
1
=1+2+3=6, (55)
or also
[11]x b2 =[579]. (56)
456
Matrix Full of Zeros

A matrix whose elements are all equal to 0 is the nu// or zero matrix. It is denoted by 0 or, when

we need to specify its dimensions, by () . Null matrices are neutral elements for addition:
IxJ

12 1+0 2+0 12
+0 = = . (57)
34| 22 |34+40 4+0 34
Null matrices are also null elements for the Hadamard product:
12 Ix0 2x0 00
00 = = =0 (58)
34 22 |3x0 4x%0 00| 2
As well as for the standard product:

12



1 2 0 1x0+2x0 1x0+2x0
X =
34| 22 |3x0+4x0 3x0+4x0

—00—0 59
1o o] 22 (59)

Triangular Matrix

A matrix is lower triangular when a;;= 0 for i <. A matrix is upper triangular when a;;= 0 for

i > j. For example,

10 00
A =|2 200 |islower triangular, (60)
3 530
and
1223
B=|0 205 |isupper triangular. (61)
0 0 30

Cross-Product Matrix

A cross-product matrix is obtained by multiplication of a matrix by its transpose. Therefore, a

cross-product matrix is square and symmetric. For example, the matrix:

11
A=|24 (62)
34
premultiplied by its transpose
; (123
A = (63)
144

gives the following cross-product matrix:

T Ix1+2x2+43%x3 1x1+2x4+3x4 14 21
A'A= = . (64)
Ix14+4%x2+4%x3 Ix1+4x4+4x%x4 14 33

A Particular Case of Cross-Product Matrix: Variance—Covariance Matrix

A particular case of cross-product matrices is correlation or covariance matrices. A variance—

covariance matrix is obtained from a data matrix by three steps: (1) subtract the mean of each

13



column from each element of this column (this is centering), (2) compute the cross-product
matrix from the centered matrix, and (3) divide each element of the cross-product matrix by

the number of rows of the data matrix. For example, if we take the /=3 by J = 2 matrix A,

21
A=|5 101, (65)
8 10
we obtain the means of each column as

m:lx 1x A
[ IxI  IxJ

21
:%x[ll 1)x[510|=[5 7]. (66)
8 10
To center the matrix, we subtract the mean of each column from all its elements. This

centered matrix gives the deviations of each element from the mean of its column. Centering

is performed as

217 [1
D=A-1xm=|510 -1 |x[5 7] (67)
810 [1
21| [57] [-3-6
=|510(-|5 7|=| 0 3| (68)

810 |5 7 3 3
We denote by S the variance—covariance matrix derived from A. It is computed as

1 1[-3 0 3 NN
S=-D'D=— x| 0 3
I 3]1-6 3 3
33
1 [18 27] [6 9
= —X = . (69)
3127 541 |9 18

(Variances are on the diagonal; covariances are off-diagonal.)

The Inverse of a Square Matrix

An operation similar to division exists, but only for (some) square matrices. This operation

uses the notion of inverse operation and defines the inverse of a matrix. The inverse is defined

14



by analogy with the scalar number case, for which division actually corresponds to

multiplication by the inverse, namely,

%:axb_l with bxb™ =1. (70)
The inverse of a square matrix A is denoted A~!. It has the following property:
AxA'=A"xA=L (71)
The definition of the inverse of a matrix is simple, but its computation is complicated and

is best left to computers.

As an example, for

1 21
A=[01 0], (72)
0 01
the inverse is:
1 -2 -1
A'=[0 1 0] (73)
0 0 1

All square matrices do not necessarily have an inverse. The inverse of a matrix does not
exist if the rows (and the columns) of this matrix are linearly dependent. For example, this

matrix

342
A=[10 2 (74)
213

does not have an inverse because the second column is a linear combination of the two other

columns:

4 31 [2] [6] [2
0|=2x|1|-|2]=2]-]2]. (75)
1 2| |3 4] |3

A matrix without an inverse is called singular. When A"! exists, it is unique.
Inverse matrices are used for solving linear equations and least square problems in, for
example, multiple regression analysis, analysis of variance, and, of course, multivariate

analysis.

Inverse of a Diagonal Matrix

15



The inverse of a diagonal matrix is easy to compute: The inverse of

A =diag{a,} (76)
is the diagonal matrix
A= diag{a;l.l} = diag{l/a,}. (77)
For example,
100 100
0.50|and|0 2 0O (78)
004 00.25

are inverse of each other.

The Big Tool: The Eigen-decomposition

So far, matrix operations are very similar to operations with numbers. The next notion is
specific to matrices. This is the idea of decomposing a matrix into simpler matrices. A lot of
the power of matrices follows from this. A first decomposition is called the eigen-
decomposition, and it applies only to square matrices. The generalization of the eigen-
decomposition to rectangular matrices is called the singular value decomposition.
Eigenvectors and eigenvalues are numbers and vectors associated with square matrices.
Together they constitute the eigen-decomposition. Even though the eigen-decomposition does
not exist for all square matrices, it has a particularly simple expression for a class of matrices
often used in multivariate analysis such as correlation, covariance, or cross-product matrices.
The eigen-decomposition of these matrices is important in statistics because it is used to find
the maximum (or minimum) of functions involving these matrices. For example, principal
components analysis is obtained from the eigen-decomposition of a covariance or correlation

matrix and gives the least square estimate of the original data matrix.

Notations and Definition

An eigenvector of matrix A is a vector u that satisfies the following equation:
Au = Au, (79)
where A is a scalar called the eigenvalue associated to the eigenvector. When rewritten,

Equation 79 becomes

16



(A=ADu=0. (80)
Therefore, u is eigenvector of A if the multiplication of u by A changes the length of u but

not its orientation. For example,

A=’ 81
=15 (81)

has for eigenvectors

3
u, = L} with eigenvalue A, =4 (82)

and

11
u, = L with eigenvalue A, =—1 (83)

When u; and uz are multiplied ‘E)y A, only their length changes. That is,

233 |12 3

Au =\u, = = =4 (84)
2102 [8 2
23|-1] |1 -1

Au, =\,u, = = =-1 . (85)
2 1|1 -1 1

This is illustrated in Figure 1.

and

For convenience, eigenvectors are generally normalized such that
uu=1. (86)

For the previous example, normalizing the eigenvectors gives

8321 -.7071
u = and u, = . (87)
5547 7071

We can check that
2 31].8321 3.3284 8321
= =4 (88)
2 1]|.5547 2.2188 5547

2 37[=7071] [ .7071 ~7071
= =1 . (89)
2 1] 7071] | -7071 7071

Eigenvector and Eigenvalue Matrices

and

17



Traditionally, we store the eigenvectors of matrix A as the columns of a matrix denoted U.
Eigenvalues are stored in a diagonal matrix (denoted A, which is the upper case Greek letter

Lambda). Therefore, Equation 79 becomes
AU=UA. (90)

For example, with A (from Equation 81), we have

B ﬂ E THi _11 } g [g _OJ 1)

Figure 1 Two Eigenvectors of a Matrix

)
|||||||||||||

ey = SN GAU

(a) (b)

Reconstitution of a Matrix

The eigen-decomposition can also be used to build back a matrix from its eigenvectors and

eigenvalues. This is shown by rewriting Equation 90 as
A=UAU"". (92)

For example, because
we obtain

L {3—1}{4 oM.z .2} {2 3}
A=UAU" = = : (93)
2110 —-1(|-4 6| |21

Digression: An Infinity of Eigenvectors for One Eigenvalue

18



It is only through a slight abuse of language that we talk about the eigenvector associated with
one eigenvalue. Any scalar multiple of an eigenvector is an eigenvector, so for each eigenvalue,

there is an infinite number of eigenvectors, all proportional to each other. For example,

1 94

O 94)
23 05
2 1] ©3)

3 .

is also an eigenvector of A:

DU e

Positive (Semi)Definite Matrices

is an eigenvector of A:

Therefore,

. 0 1 : .
Some matrices, such as { }, do not have eigenvalues. Fortunately, the matrices used often

in statistics belong to a category called positive semidefinite. The eigen-decomposition of these
matrices always exists and has a particularly convenient form. A matrix is positive semidefinite
when it can be obtained as the product of a matrix by its transpose. This implies that a positive
semidefinite matrix is always symmetric. So, formally, the matrix A is positive semidefinite if
it can be obtained as
A=xXx" (98)

for a certain matrix X. Positive semidefinite matrices include correlation, covariance, and
cross-product matrices.

The eigenvalues of a positive semidefinite matrix are always positive or null, and the
eigenvectors of a positive semidefinite matrix are composed of real values and are pairwise
orthogonal when their eigenvalues are different. This implies the following equality:
U'=U".(99)

We can, therefore, express the positive semidefinite matrix A as

A=UAU" (100)
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where U (with UTU = 1) are the normalized eigenvectors. For example

A=l ! (101)
113

can be decomposed as

with
VORVONERING ﬂﬂr 0 -
Ve V| [VE VG| ot

Diagonalization

When a matrix is positive semidefinite, we can rewrite Equation 100 as
A=UAU" < A=U"AU. (104)
This shows that we can transform A into a diagonal matrix, and so the eigen-decomposition of

a positive semidefinite matrix is often called its diagonalization.

Another Definition for Positive Semidefinite Matrices

A matrix A is positive semidefinite if for any nonzero vector x, we have

xTAx>0  Vx. (105)
When all the eigenvalues of a matrix are positive, the matrix is positive definite. In that case,
Equation 105 becomes

xTAx >0  Vx. (106)
Trace, Determinant, and Rank
The eigenvalues of a matrix are closely related to three important numbers associated to a
square matrix: the trace, the determinant, and the rank.

Trace

The trace of A, denoted trace{A}, is the sum of its diagonal elements. For example, with

20



12 3

A=|45 6 (107)
78 9
we obtain
trace{A} =1+5+9=15. (108)

The trace of a matrix is also equal to the sum of its eigenvalues:

trace{A} ="}, =trace {A} (109)
14
with A being the matrix of the eigenvalues of A. For the previous example, we have
A =diag{16.1168,-1.1168,0}. (110)
We can verify that
trace{A}:ZM=16.1168+(—1.1168)=15. (111)
l

Determinant

The determinant is important for finding the solution of systems of linear equations (i.e., the
determinant determines the existence of a solution). The determinant of a matrix is equal to the

product of its eigenvalues. If det{A} is the determinant of A,

det{A} = Hk , with A, being the /th eigenvalue of A. (112)
l
For example, the determinant of A from Equation 107 is equal to

det{A}=16.1168x -1.1168x0 =0. (113)

Rank

Finally, the rank of a matrix is the number of nonzero eigenvalues of the matrix. For our
example,
rank {A} =2. (114)

The rank of a matrix gives the dimensionality of the Euclidean space that can be used to
represent this matrix. Matrices whose rank is equal to their dimensions are full rank, and they
are invertible. When the rank of a matrix is smaller than its dimensions, the matrix is not
invertible and is called rank-deficient, singular, or multicolinear. For example, matrix A from
Equation 107 is a 3 X3 square matrix, its rank is equal to 2, and therefore it is rank-deficient

and does not have an inverse.
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Statistical Properties of the Eigen-decomposition

The eigen-decomposition is essential in optimization and in statistics. For example, principal
components analysis is a technique used to analyze an /xJ matrix X in which the rows are
observations and the columns are variables. Principal components analysis finds orthogonal
row factor scores that ‘‘explain’’ as much of the variance of X as possible. They are obtained
as
F = XQ (115)

where F is the matrix of factor scores and Q is the matrix of loadings of the variables. These
loadings give the coefficients of the linear combination used to compute the factor scores from

the variables. In addition to Equation 115, we impose the constraints that

FI'F = QTXTXQ (116)
is a diagonal matrix (i.e., F is an orthogonal matrix) and that
Q'Q-=1 (117)

(i.e., Q is an orthonormal matrix). The solution is obtained by using Lagrange multipliers in
which the constraint from Equation 117 is expressed as the multiplication with a diagonal

matrix of Lagrange multipliers denoted A; in order to give the following expression:

A(QTQ-T1) (118)
This amounts to defining the following equation:
L=F'F-A(Q"Q-T). (119)

The values of Q that give the maximum values of £ are found by first computing the derivative

of Lrelative to Q,

L or
96 ~ 2X'XQ-24Q, (120)

and setting this derivative to zero:

g—é =X'XQ-AQ=0 <= XTXQ=AQ. (121)

Because A is diagonal, this is an eigen-decomposition problem, A is the matrix of eigenvalues
of the positive semidefinite matrix XX ordered from the largest to the smallest, and Q is the

matrix of eigenvectors of X'X. Finally, the factor matrix is

F = XQ. (122)
The variance of the factor scores is equal to the eigenvalues:
FIF =QTXTXQ =Q7QAQ"TQ = A. (123)
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Because the sum of the eigenvalues is equal to the trace of X'X, the set of the first factor
scores “extracts” as much of the variance of the original data as possible, the second set of

factor scores extracts as much of the variance left unexplained by the first factor as possible,

1
and so on for the remaining factors. The diagonal elements of the matrix A2, which are the

standard deviations of the factor scores, are called the singular values of X.

A Tool for Rectangular Matrices: The Singular Value Decomposition

The singular value decomposition (SVD) generalizes the eigen-decomposition to rectangular
matrices. The eigen-decomposition decomposes a matrix into two simple matrices, and the
SVD decomposes a rectangular matrix into three simple matrices: two orthogonal matrices and
one diagonal matrix. The SVD uses the eigen-decomposition of a positive semidefinite matrix

to derive a similar decomposition for rectangular matrices.

Definitions and Notations

The SVD decomposes matrix A as

A=PAQ", (124)
where P is the matrix storing the (normalized) eigenvectors of the matrix AA™ (i.e., PTP = ).
The columns of P are called the left singular vectors of A. Matrix Q stores the (normalized)

eigenvectors of the matrix ATA (i.e., Q'Q =1I). The columns of Q are called the right singular

1
vectors of A. The matrix A is the diagonal matrix of the singular values, A = A2, with A being

the diagonal matrix of the eigenvalues of AAT and ATA.

The SVD is derived from the eigen-decomposition of a positive semidefinite matrix. This
is shown by considering the eigen-decomposition of the two positive semidefinite matrices
obtained from A, namely, AAT and ATA. If we express these matrices in terms of the SVD of

A, we find

AA" =PAQ'QAP' =PA’P" = PAP' (125)

and

A"A =QAP'PAQ" =QA’Q" =QAQ". (126)
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This equation shows that A is the square root of A, that P is the matrix of the eigenvectors

of AAT, and that Q is the matrix of the eigenvectors of ATA. For example, the matrix

1.1547 —1.1547
A=|-1.0774 0.0774 127)

—0.0774 1.0774
can be expressed as

0.8165 0 1.1547  -1.1547
T 2 04 0.7071 0.7071
A=PQ =|-4082 -0.7071 =1-0.0774  0.0774|.  (128)
0 1]]-0.7071-0.7071
-0.4082 -0.7071 -0.0774  1.0774

We can check that

0.8165 0
AA" =|-0.4082 -0.7071
—0.4082 -0.7071

2.6667 1.3333 1.3333
=11.3333 1.1667 0.1667

{22 o} {0.8165—0.4082—0.4082}
1.3333 0.1667 1.1667

0 1°| |0 -0.7071 0.7071

and that

ATA {0.7071 0.7071}{22 o} {0.7071 0.7071}_{2.5 1.5
-1.5 25

- o 12| 107071 0.7071

. (130)
~0.7071 0.7071

Generalized or Pseudoinverse

The inverse of a matrix is defined only for full rank square matrices. The generalization of the
inverse for other matrices is called generalized inverse, pseudoinverse, or Moore—Penrose
inverse and is denoted by X*. The pseudoinverse of A is the unique matrix that satisfies the

following four properties:

AA*A = A ()
ATAAT = A" (if)
(AAY)" = AA* (symmetry 1) (iif)

(A*A) =A'A (symmetry 2) (v). (131)
For example, with

1 -1
A=|-11 (132)
11
we find that the pseudoinverse A" is equal to

24



L [25 -25 5
A= . (133)
~25 255

This example shows that the product of a matrix and its pseudoinverse does not always give

the identity matrix:

1 -1
AAT=|-11 {
1

(134)

25 -25 5| [03750 0.1250
~25 25 5| 101250 0.3750

Pseudoinverse and SVD

The SVD is the building block for the Moore—Penrose pseudoinverse because any matrix A

with SVD equal to PAQT has for pseudoinverse
A"=QA'P". (135)

For the preceding example, we obtain

A | 07071 07071 270 0.8165 —0.4082 —0.4082] [0.2887 -0.6443 0.3557 136
~0.7071 0.7071 B '

- o 1! 0 -0.7071  0.7071 —0.2887 —0.3557 0.6443

Hervé Abdi
See also Analysis of Covariance (ANCOVA); Analysis of Variance (ANOVA); Canonical
Correlation Analysis; Confirmatory Factor Analysis; Correspondence Analysis; General
Linear Model; Latent Variable; Mauchly Test; Multiple Regression; Principal Components
Analysis; Sphericity; Structural Equation Modeling

25



Further Readings

Abdi, H., & Williams, L.J. (2010). Principal component analysis. Wiley Interdisciplinary
Reviews: Computational Statistics, 2, 433—459.

Abdi H., & Beaton, D. (2022). Principal component and correspondence analyses using R.
New York: Springer.

Guillemot, V., Beaton, D., Gloaguen, A., Lofstedt, T., Levine, B., Raymond, N., Tenenhaus,
A. & Abdi, H. (2019). A constrained singular value decomposition method that integrates
sparsity and orthogonality. PLoSOne, 14(1), 1-39.
https://doi.org/10.1371/journal.pone.0211463

Deisenroth, M.P., Alod Faisal, A., & Soon Ong, C., (2020). Mathematics for machine
learning. Cambridge: Cambridge University Press.

Rao, C.R., Mitra, S.K. (1971). Generalized inverse of matrices and its applications. New
York: Wiley.

Searle, S. R. & Khuri, A.L. (2017). Matrices algebra useful for statistics. New York: Wiley.

26



