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Abstract
Correspondence Analysis (CA)—the method of choice to analyze contingency
tables—is widely applied in text analysis, psychometrics, chemometrics, etc. But
CA becomes difficult to interpret when items load on several dimensions, when
dimensions comprise items whose loadings are of intermediate values, or when
the number of rows or columns is large—a configuration routinely found in con-
temporary statistical practice. For principal component analysis (PCA), this inter-
pretation problem has been traditionally handled with rotation and more recently
with sparsification methods often inspired by the LASSO. Curiously, despite the
strong connections between CA and PCA, sparsifying correspondence analysis re-
mains essentially unexplored.
In this paper, we extend the Penalized Matrix Decomposition (a relatively recent
method based on the singular value decomposition) to sparsify CA. We present
some theoretical results and properties of the resulting sparse correspondence
analysis and illustrate this method with the analysis of a large textual data set.

Keywords: Sparsity, Correspondence Analysis, Generalized singular value de-
composition, LASSO, Penalized matrix decomposition.
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From Plain to Sparse Correspondence Analysis:
A Generalized Singular Value Decomposition Approach

Abstract
Correspondence Analysis (CA)—the method of choice to analyze contingency tables—is
widely applied in text analysis, psychometrics, chemometrics, etc. But CA becomes diffi-
cult to interpret when items load on several dimensions, when dimensions comprise items
whose loadings are of intermediate values, or when the number of rows or columns is
large—a configuration routinely found in contemporary statistical practice. For principal
component analysis (PCA), this interpretation problem has been traditionally handled with
rotation and more recently with sparsification methods often inspired by the LASSO. Cu-
riously, despite the strong connections between CA and PCA, sparsifying correspondence
analysis remains essentially unexplored.
In this paper, we extend the Penalized Matrix Decomposition (a relatively recent method
based on the singular value decomposition) to sparsify CA. We present some theoretical
results and properties of the resulting sparse correspondence analysis and illustrate this
method with the analysis of a large textual data set.

Keywords: Sparsity, Correspondence Analysis, Generalized singular value decomposi-
tion, LASSO, Penalized matrix decomposition.
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1. Introduction

Correspondence analysis (CA)—the method of choice to analyze contingency
tables—becomes difficult to interpret when 1) the data structure is complex as
opposed to the simple structure (formalized by early psychometricians, such as,
e.g., Thurstone, 1935, 1947) where each component is characterized by few items
and each item contributes only to few—ideally one—components) or 2) when
the number of rows or columns is large—a configuration routinely found in con-
temporary statistical practice. This interpretation problem, not specific to CA,
also occurs in related multivariate methods such as principal component analy-
sis (PCA) where it has been traditionally addressed with methods such as rotation
and more recently with sparsification methods mostly derived from the LASSO
(Hastie et al., 2001; Tibshirani, 1996). These sparsification methods are also com-
monly used in fields where the data comprise large numbers of variables (Jenatton
et al., 2011) or observations that can include tens of thousands (e.g., in genomics,
Chun and Keleş, 2010) to millions (as in neuroimaging, see, e.g., Le Floch et al.,
2012; Silver et al., 2012).

But these recent sparsification methods have not yet been widely adapted
for CA and its variants. In fact, so far, mostly multiple correspondence analysis
(MCA)—which can be seen as an extension of PCA for qualitative variables, as
well as an extension of CA to more than two qualitative variables—has benefited
from such a (precious) few of these approaches (specifically, see Bernard et al.,
2012; Guillemot et al., 2020; Mori et al., 2016).

It is only recently that sparsification for CA per se has been proposed (see, Liu
et al., 2023). This approach uses the fact that CA can be interpreted 1) as a dou-
ble weighted PCA of both rows and columns of the data matrix, or, equivalently,
2) as a generalized singular value decomposition (GSVD, see, e.g., Abdi, 2007;
Greenacre, 1984) that incorporates metric constraints on the rows and columns of
the data matrix. Within this framework, sparsification is implemented by adding
additional constraints on the optimization problem solved by the singular value
decomposition (SVD). This constrained SVD still decomposes the data matrix into
(“pseudo”) singular vectors and (“pseudo”) singular values, but this decompo-
sition seeks a compromise between concurrently maximizing explained variance
and sparsity. Liu et al. (2023) distinguish two cases depending on whether sparsity
is required for either rows or columns, or both.

This paper replicates and extends the approach of Liu et al. (2023) in partic-
ular by proposing in lieu of their sequential algorithm, a global algorithm for the
simultaneous optimization of the dimensionality of the sparsified space and the
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sparsification parameters of the rows and columns of the data.
Although the theory of sparsity-inducing constraints is well documented (es-

pecially for PCA), the extension to CA is not as straightforward given its special
properties. In this paper, we introduce a general formulation of sparsification
which can generalize PCA to other related multivariate methods and, specifically,
to CA.

We begin with the definition and main properties of CA, followed by a short
exposition of the relevant approaches to sparsify PCA. We then show how to
extend the concepts from sparse PCA to obtain a sparse version of CA, and describe
how sparsifying CA conflicts with some of its key properties that are therefore lost
in the process. Finally, we illustrate sparse CA with an analysis of an example of
textual analysis extracted from Project Gutenberg (Gerlach and Font-Clos, 2020).

2. Background

2.1. Notations

Matrices are denoted in upper case bold letters, vectors are denoted in low-
ercase bold letters, and their elements are denoted in lowercase italic letters (note
that, by default, vectors are column vectors). Matrices, vectors and elements from
the same matrix all use the same letter (e.g., A, a, a). The transpose operation is
denoted by the superscript T, the inverse operation is denoted by −1. The identity
matrix is denoted I, vectors or matrices of ones are denoted 1, matrices or vectors
of zeros are denoted 0 (by default, I, 0, and 1 are conformable with the other terms
in a formula). The standard product between two matrices is indicated by juxta-
position (i.e., XY means X times Y); the Hadamard product (i.e., element-wise)
is denoted by ⊙ (e.g., X⊙Y), note that the Hadamard product is defined only
between matrices with the same dimensions.

When provided with a square matrix, the diag operator gives a vector that
contains the diagonal elements of this matrix. When provided with a vector, the
diag operator gives a diagonal matrix with the elements of the vector as the diag-
onal elements of this matrix. A diagonal matrix is denoted D, when a subscript is
attached, it denotes the vector that stores the diagonal elements ot he matrix; for
example, Da = diag(a). When provided with a square matrix, the trace operator
gives the sum of the diagonal elements of this matrix. For an I by J matrix X and
for M being a J by J symmetric positive definite matrix, the squared M-norm of
X is denoted ∥X∥2

M and is computed as:

∥X∥2
M = trace

(
XMXT) . (1)
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When M is the identity matrix, the M-norm is equal to the square root of the sum
of squares of the entries of the matrix and is called the Frobenius norm denoted
L2 = ∥X∥2

2. Another useful norm is the sum of the absolute values of the matrix
called the L1 norm.

A probabilistic matrix (i.e., a matrix with non-negative elements whose sum
is equal to 1) is denoted Z, its row (respectively column) sums are stored in vector
r (respectively c): r = Z1 (respectively c = ZT1). The matrix of row (respectively
column) profiles is denoted R = D−1

r Z (respectively C = ZD−1
c ).

When describing an optimization problem, the operator argmin
x

f (x) [respec-

tively argmax
x

f (x)] gives the value of x that minimizes (respectively maximizes)

the function f (x).

2.2. SVD and Generalized SVD

The singular value decomposition (SVD) and its extension the generalized
singular value decomposition (GSVD, see, e.g., Abdi, 2007; Allen et al., 2014;
Greenacre, 1984; Holmes, 2008; Takane, 2002) are the foundations of most con-
temporary multivariate statistical approaches.

The SVD of an I × J matrix X solves the following maximization problem
(Eckart and Young, 1936): Find a matrix (denoted X̂L) of rank L [with L ≤
min(I,J)], computed as

X̂L =
L

∑
ℓ=1

δℓuℓvT
ℓ = UL∆LVT

L with UT
LUL = VT

LVL = I and ∆L = diag(δL) (2)

such that X̂L is the matrix of L rank closest to X (in the metric defined by the L2

norm):
argmin
UL,∆L,VL

∥X− X̂L∥2
2 (3)

The SVD of a matrix can be computed by first computing its rank one approx-
imation [i.e., the singular triplet (δ1, u1, v1)] and then subtracting this rank one
approximation from X—a procedure called deflation. The first singular triplet of
the deflated matrix X is then the second singular triplet of X, etc.

The generalized SVD (GSVD), differs from the plain SVD by incorporating
different orthogonality constraints on the singular vectors. Specifically, with M
being an I× I positive definite matrix (called the row metric matrix) and W a J×J
positive definite matrix (called the column metric matrix), the GSVD of X solves
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the following optimization problem (compare with Equation 3):

argmin
PL,∆L,QL

∥X− X̂L∥2
2 = argmin

PL,∆L,QL

∥X−PL∆LQT
L∥2

2 (4)

with
PT

LMPL = QT
LWQL = I, and ∆L = diag(δL) , (5)

where PL is the I ×L matrix containing the generalized left singular vectors and
QL the J×L matrix containing the generalized right singular vectors. In practice,
the GSVD of a matrix X can be obtained from the plain SVD of a matrix denoted X̃
obtained by pre- and post-multiplying X by the square root of the row and column
metric matrices:

X̃ = M
1
2 XW

1
2 . (6)

More details are given in Appendix A.

2.3. Basics of Plain Correspondence Analysis

Correspondence analysis was originally developed to analyze the pattern of
deviations from independence (as measured by a χ2 statistic) in a contingency
table (see Abdi and Béra, 2018). CA provides, for both rows and columns, a
set of factor scores whose total inertia is proportional to the independence χ2

computed on the original contingency table. The factor scores are obtained from
the following generalized singular value decomposition (cf. Equation 4) where
D−1

r and D−1
c are called χ2-metric matrices (Greenacre, 2010):

Z− rcT = P∆QT with PTD−1
r P = QTD−1

c Q = I . (7)

Correspondence analysis can also be obtained from the plain SVD of :

Z̃ = D− 1
2

r
(
Z− rcT)D− 1

2
c (8)

(For further properties refer to Appendix C).

3. Sparse SVD with the Projected Penalized Matrix Decomposition

Because correspondence analysis is a particular PCA (and therefore a specific
SVD, see Equations 8, above, as well as Equations 45 to 47 in Appendix B) a
straightforward approach to the sparsification of CA is to adapt an already sparse
version of PCA or SVD.
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PCA being the oldest and most well-known multivariate method, it is no sur-
prise that several sparse methods have been developed for PCA since the pioneer-
ing papers of Vines (2000) and Jolliffe et al. (2003). Case in point, in their—
already old—review paper, Ning-min and Jing (2015) count about twenty algo-
rithms for sparsifying PCA.

Recently, several authors have proposed sparse variants of the SVD (see, for
reviews, e.g., Allen et al. 2014; Guillemot et al. 2019; Hastie et al. 2015; Jolliffe
and Cadima 2016; Witten et al. 2009; Zou et al. 2006), or, specifically, of PCA

(Benidis et al. 2016; Mattei et al. 2016). For most of these sparse variants, sparsi-
fication is obtained by adding sparsity constraints on both P and Q, or on Q alone.
We decided to use the penalized matrix decomposition method (PMD) developed
by Witten et al. (2009) because it is well-known and is implemented in R (with
the PMA package).

3.1. Penalized Matrix Decomposition: Background

The penalized matrix decomposition (PMD) method (Witten et al., 2009) gen-
eralizes the plain SVD by adding sparsification constraints on the right and left
singular vectors. Specifically, the PMD methods solves the following optimization
problem:

argmin
δℓ,uℓ,vℓ
ℓ=1,...,L

∥∥∥∥∥X−
L

∑
ℓ=1

δℓuℓvT
ℓ

∥∥∥∥∥
2

2

subject to


uT
ℓ uℓ = 1

vT
ℓ vℓ = 1

∥uℓ∥1 ≤ s1,ℓ

∥vℓ∥1 ≤ s2,ℓ

(9)

where s1,ℓ and s2,ℓ are positive constants, provided by the user as two vectors of
length L denoted s1 and s2 that will drive the sparsity of the solution. The solution
to this optimization problem denoted (

•
δ,

•
U,

•
V) is called a pseudo-singular triplet

(containing respectively the pseudo-singular values, left pseudo-singular vectors,
and right pseudo-singular vectors).

In PMD, the first pseudo-singular triplet is estimated by solving Equation 9
for ℓ= 1. The next pseudo-singular triplets are estimated by approximating each
subsequent deflated matrix by a rank one matrix. At each iteration ℓ > 1, the
deflated matrix is equal to

Xℓ = Xℓ−1 −
•
δℓ−1

•uℓ−1
•vT
ℓ−1, (10)

where, by convention, X1 = X. This procedure is very similar to the standard (i.e.,
Hotelling’s) deflation for the SVD, but in Equation 10, the deflated matrix is not
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guaranteed to be orthogonal to the previous rank one optimal matrix (as noted,
e.g., by Mackey, 2009).

To (partially) palliate this problem, Witten et al. (2009) and Mackey (2009)
independently proposed a heuristic to handle the non-orthogonality of the row
(i.e., left) factor scores (in the context of sparse PCA) where the left pseudo-
singular vectors are not required to be sparse. In this case, Hotelling’s deflation is
replaced by the so-called projection deflation

Xℓ =
(
I− •uℓ−1

•uT
ℓ−1

)
Xℓ−1 . (11)

3.2. Projected Penalized Matrix Decomposition

In our case, we want to be able to obtain both sparse left and right singular
vectors. To do so, we propose to extend the updating step from Equation 11 to
the left and right pseudo-singular vectors. This way, for each Dimension ℓ, the
projected deflated matrix is obtained as:

Xℓ =
(
I− •uℓ−1

•uT
ℓ−1

)
· · ·

(
I− •u1

•uT
1
)

X
(
I− •v1

•vT
1
)
· · ·

(
I− •vℓ−1

•vT
ℓ−1

)
. (12)

With this deflation scheme, PMD is applied iteratively to the data matrix after
the projection deflation. Combining PMD and the projected deflation, gives the
projected Penalized Matrix Decomposition (pPMD, see Liu et al. 2023). It should
be noted, however, that pPMD does not yield perfect orthogonality but (according
to Witten et al., 2009) as for projection deflation, the solutions are unlikely to be
highly correlated.

4. Sparse Correspondence Analysis

In this section, we present a new way to select optimal values for the sparsity
parameters, as well as choosing the optimal number of dimensions for sparse CA.
Finally, we discuss the effect of introducing sparsity on the properties of CA.

4.1. Sparse CA with pPMD

Because CA is obtained from the plain SVD of Z̃ (see Equation 8), the current
version of sparse CA is obtained by applying pPMD to Z̃. This procedure generates
(see Equation 9) pseudo-singular values (denoted

•
δ ), left pseudo-singular vectors

(denoted
•
U), and right pseudo-singular vectors (denoted

•
V). These pseudo vectors

and values are then used to compute sparse weight and contribution matrices for
rows and columns as :
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• row weight matrix
•
P = D

1
2
r

•
U,

• column weight matrix
•

G = D
1
2
c

•
V,

Contribution matrices are obtained from the weight matrices:

• row contributions
•
TI =

•
U⊙

•
U,

• column contributions
•
TJ =

•
V⊙

•
V.

Note that a zero weight implies a null contribution.
In this paper, we define, (in a manner reminiscent of the transition formula

from CA), the factor scores of sparse CA as linear combinations of the profiles
with the (sparse) weights:

• row factor scores
•
F = RD−1

c
•

Q,

• column factor scores
•

G = CD−1
r

•
P,

and (just like in plain CA) for each dimension, the variance of the factor scores
is equal to the squared pseudo-singular value. Note, also, that, while weights are
sparse, factor scores may not be sparse.

Even though the computation of the factor scores for sparse CA bears some
resemblance to the transition formula (and would be equivalent to the transition
formula in plain CA), the transition formulas (from Equation 43 in the Appendix)
no longer hold: row (respectively column) factor scores are not barycenters any-
more of the column (respectively row) factor scores: Transition formulas hold
only for plain CA.

4.2. Two Types of Sparsity

Using a sparse version of CA is especially useful when the data are high-
dimensional. However, large data sets come in two types: 1) both row and column
sets are high-dimensional and sparsifying both dimensions makes sense, or 2) only
one of the row or column sets is high-dimensional—and the data table is a “flat”
or a “tall” contingency table—and then, it makes more sense to sparsify only the
larger set of items. Therefore, two types of sparsity need to be considered for
the sparse solution of CA: 1) both-side (or double) sparse CA or 2) one-side (or
simple) sparse CA.

Both-side sparsity looks for underlying dimensions that are explained by
sparse combinations of both rows and columns. Sparse SVD provides this so-
lution. The easiest way to implement both-side sparsity is to sparsify rows and
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columns weights in the same proportion, an approach which leads to choose sim-
ilar degrees of sparsity for

•
P and

•
Q. Following Witten et al. (2009), for

•
P and

•
Q

to have a similar level of sparsity, η is set constant (with η < 1) and the sparsity
parameters are obtained as s1,ℓ = η

√
I, and s2,ℓ = η

√
J (with I and J being the

number of rows and columns of the data matrix). But, if the rows and columns
contingency table correspond to essentially different types of variables, then it
makes more sense to choose different degrees of sparsity for rows and columns.
In this case, the parameter settings “grid” can be used, in order to restrict the L1

norms of
•
P and

•
Q at different values: s1,ℓ and s2,ℓ will be restricted to take values

(respectively) in the intervals [1,
√

I] and [1,
√

J].
One-side sparsity is suitable in asymmetrical situations when, for example,

only the rows (or the columns) of the contingency table are relevant. In this case,
only the relevant set needs to be sparsified. Interestingly, one-way sparsity is a
special case of both-side sparsity when there is no penalty on one side (which is
then left un-sparsified) and setting the sparsity parameter of the side to be sparsi-
fied equal to the square root of the cardinal of this set (e.g., to sparsify only the
rows, set s1,ℓ =

√
I ).

4.3. Choosing an Appropriate Value for the Sparsity Parameters: the Sparsity Index

An essential decision when using sparse CA is the choice of the values for the
sparsity parameters s1 and s2 and the number of dimensions L. Various methods
have been proposed: cross-validation (Witten et al., 2009), AIC or BIC (Shen
et al. 2013; Zou et al. 2006), and compromise between the goodness of fit and
sparsity (see, e.g., Trendafilov 2014; Trendafilov et al. 2017).

Among these procedures, we chose the sparsity index presented by Trendafilov
et al. (2017). This sparsity index denoted, here, ς(s1,s2,L), is the product of a “fit
ratio” and a “zero ratio.”

The fit ratio is computed as the ratio of the sum of the pseudo-eigenvalues to
the sum of the eigenvalues of the non-sparse solution, specifically

fit ratio =

L

∑
ℓ=1

•
λℓ

L

∑
ℓ=1

λℓ

. (13)

The fit ratio takes values between 0 and 1 with larger values indicating a better fit.
The zero ratio is the ratio of the number of zero weights to the total number of
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weights, specifically:

zero ratio =
#0(

•
P)+#0(

•
Q)

(I + J)L
, (14)

where #0(
•
P) [resp. #0(

•
Q)] is the total number of zeros in

•
P (resp.

•
Q). The zero

ratio takes values between 0 and 1 with larger values indicating a sparser solution.
The sparsity index ς(s1,s2,L) is obtained as the product of the fit and the zero
ratios, namely:

ς(s1,s2,L) =

L

∑
ℓ=1

•
λℓ

L

∑
ℓ=1

λℓ︸   ︷︷   ︸
"fit ratio"

#0(
•
P)+#0(

•
Q)

(I + J)L︸                ︷︷                ︸
"zero ratio"

, (15)

To sum up, the sparsity index is a compromise between maximizing the explained
variance (i.e., the fit ratio) and sparsifying the results (i.e., the zero ratio). In our
application of sparse CA, we will therefore seek for the value(s) of L, s1, and s2

that maximize ς(s1,s2,L).
Our global optimization algorithm differs from the sequential algorithm of

Liu et al. (2023) which searches for the optimal sparsity level for each dimension
conditional on the sparsity levels obtained for the previous dimensions, but with-
out searching for an optimal value of L (i.e., the dimensionality of the space). In
contrast, we obtain a global optimum in a space of Dimension L with the addi-
tional constraints that all dimensions have identical levels of sparsity : s11 = s12 =

...= s1L.

4.4. Lost Properties and other Issues

In addition to the usual (but still open) question of “How many components
to keep?” sparse exploratory methods raise new specific issues such as—among
others—loss of orthogonality and choice of the sparsity level.

The simultaneous orthogonality of the weight vectors and of the factor scores
characterizes PCA (and SVD) because weight vectors and factor scores are both
true eigenvectors. But this simultaneous orthogonality is lost in sparse PCA and
similar methods: One cannot have both orthogonality for the weights and for the
factor scores. For example, if we force successive sparse weight vectors to be
orthogonal, as in SCoTLaSS (Jolliffe et al., 2003), the associated factor scores are
no longer orthogonal.
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This lack of orthogonality makes the interpretation of the factor scores some-
what difficult (in a way reminiscent of the issues linked to oblique rotation in
traditional factor analysis) because conclusions about one dimension involve all
correlated dimensions and because the same information is explained (to differ-
ent degrees) by all correlated dimensions. When interpreting the factor scores,
one could erroneously find the same information in different dimensions. In ad-
dition, with non-orthogonal factor scores, the variances explained by different
dimensions are no longer additive (i.e., the sum of the variances explained by a
set of non-orthogonal dimensions will over-estimatethe variance of the sub-space
spanned by these dimensions).

As we have noticed before, the simultaneous pseudo-barycentric transition
formulas (from Equation 43 in Appendix B) do not hold anymore because these
formulas are a characteristic property of plain CA. Here

•
F is not proportional to

•
P and

•
G is not proportional to

•
Q: In other words, the relationship between the

weights and the factor scores is not linear anymore. As a consequence, graphics
should be drawn using the factor scores

•
F and

•
G rather than the weights

•
P and

•
Q, because a graphic drawn from the weights is likely to have too many points
stuck to the axes (these will be the items with zero weights). However, a graph
drawn from the weights or even from the signed contributions could be of interest
in some applications.

5. A Real Data Example

We applied sparse CA to a data set—obtained from the Project Gutenberg
(Gerlach and Font-Clos, 2020)—compiling common words used in 100 books
each from 5 book categories: Biographies, Love stories, Mystery, Philosophy,
and Science Fiction. This created a contingency table (counting the number of
occurrences of words per book) with 1502 rows (words) and 500 columns (books).

5.1. Plain CA Results

Factor scores maps for plain CA for Dimensions 1 and 2 are shown in Fig-
ures 1 (for the words) and 2 (for the books). The word factor map shows only a
few words, whereas the book factor map does not show the names of the books
but color them by genre and add, for each type of book, a 70% tolerance convex
hulls (a K% tolerance interval comprises K% of a sample or a population, see,
e.g., Abdi et al. 2009)1. Parallel to the partition of the vocabulary, Dimension 1

1The graph and convex hulls were created using functions ggConvexHull and
CreateFactorMaps4CA from the R-package PTCA4CATA.
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(see Figure 2) differentiates the Philosophical genre from Love stories, Mystery,
and Science fiction.
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CA: row factor scores

Figure 1: Plain CA: Row factor scores

The second dimension of plain CA explains 7% of the inertia. As shown in
Figure 1 and Table 1b), the row factor scores are characterized by the opposition
of (on the negative side) words related to war (enemy, battle, war, government) or
geography (e.g., south, north, west, east, miles, city), and verbs in the past tense
(e.g., ordered, united, received, sent, arrived) versus on the negative side, words
related to thoughts (e.g., understanding, experience, reason, meaning, conscious)
and verbs in the present tense (e.g., does, miss, mean, thinks, makes, is, can).
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Parallel to the partition of the vocabulary, Dimension 2 (see vertical axis Figure 2)
differentiates the Biography genre from books of Philosophy.

Biography

Love story
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Philosophy
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CA: column factor scores

Figure 2: Plain CA: Column factor scores

In general, the Philosophy genre uses language closely aligned with scientific
writing. In contrast, the Biography genre typically uses language focused on the
events of a male character’s past, often involving war. Meanwhile, the other three
genres of fiction are more concerned with describing emotions and the experiences
of female characters.

The Philosophy genre is particularly distinctive in its use of language, be-
cause it preferably uses highly specialized terminology not commonly found in
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other genres. However, interpreting factor scores for this genre is challenging
given the presence of many words with close-to-zero weights that are difficult to
integrate in a coherent framework.

5.2. Choosing an Optimal Value of the Constraints Parameters with the Sparsity
Index

Recall that the sparsity index ς(s1,s2,L) is a function of s1, s2, and L. To find
the sparsity index optimal value, we explored the (3-dimensional) space spanned
by these parameters. We chose L (i.e., the number of dimensions) from all integers
between 2 and 20, and we chose s1 (resp s2) from the 20 possible values evenly
distributed between 1 and

√
I (resp.

√
J). To speed up computations and provide

the same sparsity value for each dimension, we decided to have identical values
for s1 and s2. We then iteratively applied sparse CA to the Gutenberg Project
data set with a number of dimensions equal to L (with L varying from 1 to 20).
Figure 3 shows the scatterplot of all combinations of the parameters with zero
ratio (see Equation 15) on the horizontal axis and the fit ratio on the vertical axis.
The points in the figure are colored according to the number of dimensions of
these solutions. The isolines correspond to a fixed value of the sum of squared
fit and zero ratios, for example, the thick isoline going from a fit ratio of 1 to the
zero ratio of 1 is the locus of the sum of these two squared ratios equal to 1. The
closest solutions to the upper right corner (which matches a fit and a zero ratio
of 1) is the optimal one with the largest sparsity index. In Figure 3, this solution
is indicated by the arrow and the value of its sparsity index. In this analysis, the
optimal sparsity index is equal to .47 and occurs for an L = 2 factor solution with
a fit ratio equal to .72, a zero ratio equals .66, and sparsity parameters for rows
being s1 ≈ (10.94,10.94) and for columns being s2 ≈ (13.37,13.37).

Figure 4 shows the values taken by the sparsity parameter on a map where
the horizontal axis corresponds to the 20 values chosen between 1

I and s1 and the
vertical axis corresponds to the 20 values chosen between 1

J and s2. The values of
s1 (resp. s2) are scaled by I (resp. J) so that the range of these possible sparsity
parameters becomes between 0 and 1. In Figure 4, the optimal solution, which
has the largest sparsity index is identified by the star.

5.3. Sparse CA Results

The results from sparse CA are shown in Figures 5 to 8. With sparsification,
the words that have small contributions in plain CA now have zero contribution
and the words with large contributions now have even larger contributions—a
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Figure 3: Fit ratio to zero ratio graph.

pattern shown in Figure 5 which plots, for the rows, the plain CA contributions
(ordered from left to right by their factor scores) versus on the bottom the sparse
CA.

A similar pattern, but with with a smaller effect of sparsity, is found for the
contributions of the books (see Figure 6). The factor scores are shown in Figures 7
and 8 with words and books that have zero contributions on both dimensions indi-
cated by hollow dots. The first dimension of sparse CA explains 17% of the inertia.
Similar to plain CA, the first dimension differentiates neutral pronouns (e.g., itself,
their, us, human, this) and words (e.g., understanding, pure, science, ideas) from
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words of feminine figures (e.g., girl, she, herself, lady) and words describing emo-
tions (e.g., miss, smiled, laughed, sorry; see Table 2a and the horizontal axis in
Figure 7).

Patterns similar to plain CA are also found for the column factor scores of
sparse CA, which differentiates the Philosophy genre from Love stories, Mystery,
and Science fiction (see the horizontal axis in Figure 8). Books with a small
contribution in plain CA have a zero contribution with sparse CA and books with
a large contributions in CA now have even larger contributions in sparse CA—a
pattern shown in Figure 6 which plots, for the books, the plain CA contributions
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(ordered from left to right by their factor scores) versus, on the bottom, the sparse
CA.

The second dimension of sparse CA explains 5% of the inertia. The row factor
scores are characterized by the opposition (on the positive side the dimension) of
words related to war (e.g., enemy, battle, attack, war), geography (e.g., south,
north, east, west, miles, city), and verbs in the past tense (e.g., ordered, united,
received) to (on the negative side the dimension) words related to thoughts (e.g.,
understanding, experience, reason, meaning, think) and feminine figures (e.g.,
she, girl, herself, lady, her), and verbs in the present tense (e.g., miss, is, does, say,
be, can, am) (see the vertical axis in Figure 7 and Table 2b).

The column factor scores differentiate books from the Biography genre from
books of Philosophy, Love stories, and Mystery (see the vertical axis in Figure 8
and bottom panel of Figure 6).

Compared to the results from plain CA, because sparse CA shrunk some words
while emphasizing others, the pattern opposing neutral versus feminine pronouns
along Dimension 1 becomes more noticeable. Compared to the results from plain
CA, because the transition formula is no longer valid in sparse CA, the sparsity of
the contributions (derived from loadings; see Figures 5 and 6) does not propagate
to give sparse factor scores. But, as demonstrated, the sparsity of contributions
can be integrated to facilitate the interpretation of factor scores. Moreover, al-
though the results from sparse CA do not have the optimal proportion of explained
inertia, sparse CA gives the solution with the optimal trade-off between the iner-
tia explained and sparsity. Finally, it is worth noting that because the sparse CA

factor scores of the two dimensions are not orthogonal, their percentages of ex-
plained inertia are not additive and need to be considered separately. However,
here although the components from sparse CA are not orthogonal, the two selected
dimensions are close-to-orthogonal with a correlation coefficient of .02.
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words loadings contributions* factor scores
science −4.22 60 −1.40
ideas −3.80 38 −1.26
understanding −3.71 21 −1.23
existence −3.68 39 −1.22
system −3.54 28 −1.17
pure −3.47 20 −1.15
ii −3.43 27 −1.14
experience −3.31 36 −1.10
physical −3.30 16 −1.09
material −3.30 15 −1.09
nature −3.25 79 −1.08
knowledge −3.24 49 −1.07
iii −3.24 15 −1.07
itself −3.17 64 −1.05
according −3.16 22 −1.05
example −3.09 14 −1.02
parts −3.06 17 −1.01
series −3.05 10 −1.01
progress −3.02 15 −1.00
object −2.94 26 −0.98
stepped 2.11 3 0.70
sat 2.12 14 0.70
box 2.13 5 0.70
sorry 2.13 6 0.71
smile 2.13 9 0.71
cried 2.13 16 0.71
door 2.15 27 0.71
window 2.17 10 0.72
yes 2.18 30 0.72
guess 2.25 5 0.74
nice 2.25 4 0.74
laughed 2.31 9 0.77
shook 2.33 8 0.77
she 2.35 380 0.78
ca 2.36 14 0.78
whispered 2.36 6 0.78
oh 2.38 31 0.79
miss 2.42 36 0.80
girl 2.48 31 0.82
smiled 2.50 9 0.83

(a) Dimension 1

words loadings contributions* factor scores
understanding −5.40 4 −0.99
pure −4.54 3 −0.83
experience −4.07 5 −0.75
existence −4.05 4 −0.74
ideas −3.77 3 −0.69
space −3.57 2 −0.65
reason −3.38 6 −0.62
sense −3.19 4 −0.58
object −3.16 2 −0.58
science −3.10 3 −0.57
physical −3.08 1 −0.56
material −3.01 1 −0.55
itself −2.99 5 −0.55
meaning −2.94 1 −0.54
conscious −2.94 0 −0.54
does −2.91 5 −0.53
merely −2.87 2 −0.53
soul −2.76 2 −0.50
nature −2.75 5 −0.50
absolutely −2.65 0 −0.49
post 3.74 0 0.69
hundred 3.77 4 0.69
report 3.95 1 0.72
english 3.99 4 0.73
city 4.11 4 0.75
miles 4.71 4 0.86
east 4.79 2 0.88
orders 4.80 2 0.88
united 4.98 2 0.91
west 5.11 2 0.94
government 5.34 5 0.98
ordered 5.36 2 0.98
war 5.72 9 1.05
attack 5.83 3 1.07
command 6.05 4 1.11
river 6.27 8 1.15
north 6.47 5 1.19
battle 6.61 5 1.21
south 6.72 5 1.23
enemy 8.42 13 1.54

(b) Dimension 2

Table 1: The 20 most extreme words from each dimension of Plain CA.

Note: The contributions shown as 0 in 1b were too small to be displayed as integers; it is
worth noting that this value does not indicate zero contributions. * indicates that the
original values were multiplied by 10,000 and rounded to the nearest integer for display
purposes.
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words loadings* contributions* factor scores
understanding −0.67 2 −1.45
science −1.75 9 −1.44
ideas −1.16 5 −1.32
pure −0.63 2 −1.30
existence −1.24 5 −1.29
experience −1.29 5 −1.19
system −0.79 2 −1.18
ii −0.81 2 −1.16
physical −0.42 1 −1.13
knowledge −1.82 7 −1.12
material −0.36 0 −1.11
series −0.25 0 −1.11
itself −2.58 10 −1.11
nature −3.09 12 −1.10
iii −0.37 0 −1.09
object −0.99 3 −1.07
space −0.59 1 −1.06
according −0.65 1 −1.05
parts −0.49 1 −1.04
example −0.33 0 −1.02
sat 0.44 0 0.64
lips 0.18 0 0.64
dear 0.71 1 0.65
smiling 0.00 0 0.65
sorry 0.04 0 0.65
yes 1.17 2 0.65
shook 0.07 0 0.65
ca 0.30 0 0.65
whispered 0.02 0 0.66
smile 0.20 0 0.66
lady 1.01 1 0.67
nice 0.00 0 0.68
laughed 0.15 0 0.68
her 22.60 67 0.70
herself 0.86 1 0.70
smiled 0.13 0 0.73
oh 1.17 2 0.73
girl 1.09 2 0.75
she 23.05 77 0.78
miss 1.65 4 0.82

(a) Dimension 1

words loadings* contributions* factor scores
understanding −0.95 5 −0.93
pure −0.78 3 −0.76
experience −1.58 7 −0.67
space −0.75 2 −0.64
existence −1.28 5 −0.63
ideas −1.01 3 −0.57
reason −2.28 9 −0.57
object −0.97 3 −0.53
sense −1.31 4 −0.52
miss −1.46 3 −0.51
does −2.27 7 −0.49
mean −0.93 2 −0.48
meaning −0.17 0 −0.48
conscious −0.05 0 −0.46
physical −0.23 0 −0.46
merely −0.57 1 −0.45
material −0.17 0 −0.45
things −2.88 8 −0.44
nice −0.00 0 −0.44
absolutely −0.05 0 −0.43
advance 0.17 0 0.67
report 0.16 0 0.72
city 0.97 3 0.73
general 3.26 16 0.76
english 1.48 7 0.77
miles 0.92 4 0.80
east 0.36 1 0.88
orders 0.57 2 0.92
west 0.54 2 0.94
united 0.56 2 0.95
ordered 0.51 2 1.01
government 1.43 9 1.05
war 2.34 18 1.12
attack 0.69 4 1.13
river 1.65 13 1.17
command 1.05 8 1.22
north 1.04 8 1.23
south 1.11 9 1.29
battle 0.93 7 1.29
enemy 2.32 28 1.67

(b) Dimension 2

Table 2: The 20 most extreme words from each dimension of Sparse CA.

Note: The loadings and contributions shown as 0 in these tables were too small to be
displayed as integers; it is worth noting that these values do not indicate sparsity. *
indicates that the original values were multiplied by 10,000 and rounded to the nearest
integer for display purposes.
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Figure 5: Plain CA vs. Sparse CA: Row contributions

6. Conclusion and Perspectives

In this paper, we extended sparse correspondence analysis developed by Liu
et al. (2023) by adding a new global algorithm that identifies the optimal sparsity
solution by determining both the optimal sparsity tuning parameters and the opti-
mal number of kept dimensions. Specifically, by integrating this global algorithm,
this new version of sparse CA estimates the optimal solution in a more analytic
and objective way. Sparse correspondence analysis simplifies the interpretation
in the analysis of large tables by highlighting important categories and obtaining
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Figure 6: Plain CA vs. Sparse CA: Column contributions

simple successive dimensions in the spirit of the simple structure of factor analy-
sis. Its practical application raises new problems such as the choice of the optimal
level of sparsity for rows and or columns, which could be different according to
each dimension.

Another concern is the loss of orthogonality of successive dimensions—An
issue that should be explored in future work.

Sparse CA remains basically a symmetrical method where rows and columns
play the same role. In future work, we also plan to develop sparse variants of
the non symmetric correspondence analysis introduced by Lauro and D’Ambra
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(1984) and explored by Balbi (1998).

Code and data are available at:
https://github.com/vguillemot/sparseCorrespondenceAnalysis.
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Appendix
A. Notations

Matrices are denoted in upper case bold letters, vectors are denoted in low-
ercase bold letters, and their elements are denoted in lowercase italic letters (note
that, by default, vectors are column vectors). Matrices, vectors and elements from
the same matrix all use the same letter (e.g., A, a, a). The transpose operation is
denoted by the superscript T, the inverse operation is denoted by −1. The identity
matrix is denoted I, vectors or matrices of ones are denoted 1, matrices or vectors
of zeros are denoted 0 (by default, I, 0, and 1 are conformable with the other terms
in a formula). The standard product between two matrices is indicated by juxta-
position (i.e., XY means X times Y); the Hadamard product (i.e., element-wise)
is denoted by ⊙ (e.g., X⊙Y), note that the Hadamard product is defined only
between matrices with the same dimensions.

When provided with a square matrix, the diag operator gives a vector that
contains the diagonal elements of this matrix. When provided with a vector, the
diag operator gives a diagonal matrix with the elements of the vector as the diag-
onal elements of this matrix. A diagonal matrix is denoted D, and the subscript
denotes the vector that stores the diagonal elements, for example, Da = diag(a).
When provided with a square matrix, the trace operator gives the sum of the di-
agonal elements of this matrix. For an I by J matrix X and for M being a J by
J symmetric positive definite matrix, the squared M-norm of X is denoted ∥X∥2

M
and is computed as:

∥X∥2
M = trace

(
XMXT) . (16)

When M is the identity matrix, the M-norm is equal to the square root of the sum
of squares of the entries of the matrix and is called the Frobenius norm denoted
L2 = ∥X∥2

2. Another useful norm is the sum of the absolute values of the matrix
called the L1 norm.

When describing an optimization problem, the operator argmin
x

f (x) searches

for the value of x that minimizes the function f (x), and the operator argmax
x

f (x)

searches for the value of x that maximizes the function f (x).

B. The Plain and Generalized Singular Value Decompositions

The singular value decomposition (SVD) and its extension—the generalized
singular value decomposition (GSVD, for details on the generalized singular value
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decomposition see Abdi 2007; Greenacre 1984; Takane 2002)—are the founda-
tions of most contemporary multivariate statistical approaches.

B.1. The (Plain) Singular Value Decomposition

The SVD of an I × J matrix X solves the following maximization problem
(Eckart and Young, 1936): Find a matrix, denoted X̂L, of rank L [with L <

min(I,J)] equal to

X̂L =
L

∑
ℓ=1

δℓuℓvT
ℓ = UL∆LVT

L with UT
LUL = VT

LVL = I and ∆L = diag(δL) (17)

where U is the I × L matrix containing the left singular vectors, V is the J × L
matrix containing the right singular vectors, and ∆ the L × L diagonal matrix
containing the singular values δ1 ≥ ·· · ≥ δL ≥ 0, and such that X̂L is the L rank
matrix closest to X. Specifically, X̂L solves the following minimization problem:

argmin
UL,∆L,VL

∥X− X̂L∥2
2 = argmin

UL,∆L,VL

∥X−UL∆LVT
L∥2

2 with UT
LUL = VT

LVL = I,

(18)
When L is equal to the rank of X, the SVD of X is called the complete SVD (when
unspecified, the SVD is the complete SVD), in this case, matrices U and V are
written without their L index. When L is smaller than the rank of X, its SVD is
called the truncated SVD of X.

The SVD of a matrix can be computed by first computing its rank one approx-
imation [i.e., the singular triplet (δ1, u1, v1)] and then subtracting this rank one
approximation from X—a procedure called a deflation. The first singular triplet
of the deflated matrix X is obtained then the second singular triplet of X. These
procedure can then be continued till completion of the SVD of X.

B.2. Generalized Singular Value Decomposition

The generalized SVD (GSVD), differs from the plain SVD by incorporating
different orthogonality constraints on the singular vectors. Specifically, with M
being an I× I positive definite matrix (called the row metric matrix) and W a J×J
positive definite matrix (called the column metric matrix); the GSVD of X solves
the following problem (compare with Equation 18): Specifically, X̂L solves

argmin
PL,∆L,QL

∥X− X̂L∥2
2 = argmin

PL,∆L,QL

∥X−PL∆LQT
L∥2

2 (19)
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with

PT
LMPL = QT

LWQL = I,∆L = diag(δL) . (20)

where PL is the I ×L matrix containing the generalized left singular vectors, QL

is the J×L matrix containing the generalized right singular vectors, and ∆L is the
diagonal matrix of the generalized singular values.

Similarly to the plain SVD, the optimal rank-L approximation of X is obtained
by X̂L (i.e., the L-truncated GSVD of X) as:

X̂L =
L

∑
ℓ=1

δℓpℓqT
ℓ = PL∆LQT

L. (21)

B.3. Generalized SVD from Plain SVD

In practice, the GSVD matrix X can be obtained from a plain SVD of a matrix
denoted X̃ obtained by first pre- and post-multiplying X by the square root of the
row and column metric matrices:

X̃ = M
1
2 XW

1
2 . (22)

Matrix X̃ is then decomposed with a plain SVD as:

X̃ = U∆VT such that UTU = VTV = I. (23)

The generalized singular vectors of X are then obtained from the (plain) singular
vectors of X̃ as

P = M− 1
2 U and Q = W− 1

2 V. (24)

The constraints from Equations 18 and 19 are equivalent because

PTMP = UTM− 1
2 MM− 1

2 U

= UTU
= I,

and
QTWQ = VTW− 1

2 WW− 1
2 V

= VTV
= I.

(25)

Finally, the decomposition of X from Equations 18 and 19 are also equivalent
because

P∆QT = M− 1
2 U∆VTW− 1

2 = M− 1
2 M

1
2 XW

1
2 W− 1

2 = X . (26)
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C. Plain Correspondence Analysis

Just like most multivariate methods, CA can be interpreted as an optimization
problem (actually, as several equivalent optimization problems). But, in order
to sparsify CA, we will need to add more constraints to its standard GSVD opti-
mization problem. These new constraints can, in some cases, conflict with the
original optimization problem and therefore, as a trade-off, some of the essential
properties of CA could be relaxed or even lost. To facilitate the evaluation of this
trade-off, we list below the relevant basic equations for CA along with its essential
properties (for more details see, e.g., Abdi and Béra, 2018; Abdi and Williams,
2010; Beh and Lombardo, 2021; Greenacre, 1984; Lebart et al. 1984; or Saporta
and Niang-Keita, 2006).

C.1. The Basic Equations of Correspondence Analysis

Correspondence analysis was originally developed to analyze the pattern of
deviations from independence (as measured by a χ2 statistic) in a contingency
table (see Abdi and Béra, 2018). CA provides, for both rows and columns, a set of
factor scores whose total inertia is proportional to the independence χ2 computed
on the original contingency table.

The contingency table to be analyzed is stored in an I rows by J columns
matrix denoted X, whose generic element xi, j gives the number of observations
that belongs to the ith level of the first nominal variable (i.e., the rows) andthe jth
level of the second nominal variable (i.e., the columns). The grand total of the
table is denoted N.

The matrix X is first transformed into a probability matrix (i.e., a matrix com-
prising non-negative numbers and whose sum is equal to one) denoted Z and com-
puted as Z = N−1X. We denote: r the I by 1 vector of the row totals of Z and by ri

the ith element of r (i.e., r = Z1, with 1 being a conformable vector of 1’s); c the
J by 1 vector of the columns totals, by c j the jth element of c (i.e., c = ZT1); and
Dc = diag(c), Dr = diag(r) the diagonal matrices obtained from (respectively) r
and c; these two diagonal matrices are called (respectively) row and column mass
matrices. We denote by R = D−1

r Z (respectively C = D−1
c ZT) the row (respec-

tively column) profile matrix (i.e., all elements are not negative, rows of R and
columns of C sum to 1).

The factor scores are obtained from the following generalized singular value
decomposition (cf. Equation 19) where the metric matrices D−1

r and D−1
c are
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called χ2-metric matrices (Greenacre, 2010)

Z− rcT = P∆QT with PTD−1
r P = QTD−1

c Q = I . (27)

Here, by subtracting the (rank one) matrix rcT from the probability matrix Z,
the decomposed matrix:

(
Z− rcT

)
is double-centered because now all rows and

columns have zero means. In addition, this double centering of matrix Z− rcT

propagates to the singular vectors.
For example, to show that matrix Q has zero mean, we compute the column

means of Z− rcT and replace it by its GSVD from Equation 27 to get(
Z− rcT)1= 0=P∆QT1 =⇒ PTD−1

r P∆QT1= 0 =⇒ ∆QT1= 0 =⇒ QT1= 0 ,

(28)
where 1 is a J by 1 vector of 1s.

The squared singular values are called eigenvalues (denoted λk) and are stored
into the diagonal matrix Λ. The sum of the eigenvalues gives the total inertia
(denoted I or ϕ2 and equal to χ2/N) of

(
Z− rcT

)
. With the so-called “triplet

notation,” (Dray, 2014; Escoufier, 2006; Holmes, 2008)—sometimes used as a
general framework to formalize multivariate techniques—CA is equivalent to the
analysis of the triplet

(
Z− rcT,D−1

c ,D−1
r
)
. From this GSVD, the principal row and

(respectively) column factor scores are obtained as

F = D−1
r P∆ and G = D−1

c Q∆ . (29)

Note that the inertia of each dimension (i.e., each column of F and G) is equal
to its eigenvalue and that factor scores corresponding to different eigenvalues are
orthogonal (under the constraints imposed by their masses). Specifically:

λℓ =
I

∑
i=1

ri f 2
i,ℓ =

J

∑
j=1

c jg2
j,ℓ and

I

∑
i=1

ri fi,ℓ fi,ℓ′ =
J

∑
j=1

c jg j,ℓg j,ℓ′ = 0 ∀ℓ , ℓ′ (30)

or, in matrix notations:

FTDrF =Λ and GTDcG =Λ , (31)

where Dr and Dc are called (respectively) the row and column mass matrices. This
equality can be directly derived from Equations 27 and 29 (here illustrated for F):

FTDrF =∆PTD−1
r DrD−1

r P∆=∆PTD−1
r P∆=∆2 =Λ . (32)

By contrast with the principal factor scores whose Dr and Dc norms are equal
to the singular values, the standard factor scores (indicated by a superscript ∗)
have Dr and Dc norms equal to one, and are computed as

F∗ = D−1
r P and G∗ = D−1

c Q . (33)
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C.2. Correspondence Analysis from a Plain SVD

Correspondence analysis can also be obtained from both the plain SVD and
the GSVD (for details, see, e.g., Abdi 2007, and Beaton 2020). Specifically, gen-
eralized singular vectors and values and factor scores can be obtained by the fol-
lowing plain SVD:

Z̃ = D− 1
2

r
(
Z− rcT)D− 1

2
c = U∆VT (34)

which, in turn, gives the generalized singular vectors as

P = D
1
2
r U and Q = D

1
2
c V . (35)

Finally, transposing this last equation in Equation 29 gives:

F = D−1
r P∆= D− 1

2
r U∆ and G = D−1

c Q∆= D− 1
2

c V∆ . (36)

As indicated by Equation 30, the inertia of a dimension is the sum of the iner-
tia of either all the rows or all the columns, therefore a convenient way of evaluat-
ing the importance of a row (respectively a column) is to compute the proportion
accounted by a given row (respectively column) into this total. This index, called
the contribution of a row (respectively a column) is denoted ti,ℓ (respectively t j,ℓ

for a column) and is computed as

ti,ℓ =
ri f 2

i,ℓ
I

∑
i′=1

ri′ f 2
i′,ℓ

= ri f 2
i,ℓλ

−1
ℓ and t j,ℓ =

c jg2
j,ℓ

J

∑
j′=1

c j′g2
j′,ℓ

= c jg2
j,ℓλ

−1
ℓ (37)

In matrix notations, the row (respectively columns) contributions are stored in the
matrix TI (respectively TJ) computed as:

TI = Dr (F⊙F)Λ−1 = D−1
r (P⊙P) and TJ = Dc (G⊙G)Λ−1 = D−1

c (Q⊙Q) .

(38)
Note that contributions can be obtained in two equivalent ways: from the factor
scores or from the generalized singular vectors.

To facilitate the interpretation of a given dimension, to interpret a dimension
we, traditionally, use only the items whose contribution is larger than their mass
(i.e., ri or c j). The contributions are also often plotted according to the sign of
their corresponding factor scores and are then called signed contributions.
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C.3. Important Properties of Correspondence Analysis

In this section we list some important properties of correspondence analysis
relevant for sparsification.

C.3.1. Inertia and χ2

The inertia (i.e., I or equivalently ϕ2) of the centered matrix
(
Z− rcT

)
—as ob-

tained from Equation 27—is equal to the independence χ2 divided by N. Recall
that, with the present notations, χ2/N = ϕ2 is computed as

ϕ
2 =

I

∑
i=1

J

∑
j=1

(zi, j − ric j)
2

ric j
= trace

(
D− 1

2
c

(
Z− rcT)T D−1

r
(
Z− rcT)D− 1

2
c

)
. (39)

To show that ϕ2 is equal to the sum of the eigenvalues from Equation 27, suffice
to plug the singular values decomposition from Equation 27 into Equation 39 to
get:

ϕ
2 = trace

(
D− 1

2
c

(
P∆QT)T D−1

r
(
P∆QT)D− 1

2
c

)
. (40)

Using the properties of the trace operator and re-arranging shows that ϕ2 is equal
to the sum of the eigenvalues of Z− rcT, namely that:

ϕ
2 = trace

(
∆PTD−1

c P∆QTD−1
c Q

)
= trace

(
∆2)= trace(Λ) =

L

∑
ℓ=1

λℓ . (41)

which shows, as stated, that ϕ2 = ∑λℓ.

C.3.2. Factors are Centered

The centering of the singular vectors propagates to the factor scores when the
means are computed using the masses stored in the diagonal matrices Dr (for the
rows) and Dc (for the columns). So, F (respectively G), denoting the average row
(respectively column) factor scores, is computed as

F = 1DrF = 1DrD−1
r P∆= 0 and G = 1DcG = 1DcD−1

c Q∆= 0 (42)

(where 1 and 0 are conformable vectors of 1s and 0s).
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C.3.3. Transition Formulas: from Row to Column Factor Scores and Back

In CA the factor scores of one set (e.g., the rows) can be obtained from the profiles
of this set and the factor scores of the other set (e.g., the columns). Specifically
we have

F = D−1
r P∆= RG∆−1 and G = D−1

c Q∆= CF∆−1 . (43)

These formulas called transition formulas are obtained from Equations 27
and 29; for example, the transition formula for the row factor scores (i.e., from
the column factor scores) is derived as (taking into account that Q is centered)

F = D−1
r P∆= D−1

r
(
Z− rcT)D−1

c Q
[
because P∆=

(
Z− rcT)D−1

c Q
]

= D−1
r ZD−1

c Q−D−1
r rcTD−1

c Q

= D−1
r ZD−1

c Q
[
because cTD−1

c Q = 1TQ = 0
]

= D−1
r ZD−1

c DcG∆−1 [
because Q = DcG∆−1]

= D−1
r ZG∆−1

= RG∆−1. (44)

Note that, together, the two transition formulas imply that the eigenvalues in CA

cannot be larger than 1.
The transition formulas can be interpreted as a two step process. Using the

formula above (for computing F from G) The first step corresponds to the term
RG and computes the row factor scores as the weighted average (i.e., the barycen-
ter) of the column factor scores; the second step corresponds to the term ∆−1 and
is an expansion that is inversely proportional to the singular value of each fac-
tor (this is an expansion because the singular values being no larger than 1, their
inverse is no smaller than 1).

C.3.4. Correspondence Analysis as a Double Principal Component Analysis

The row and column factor scores of CA can also be obtained from two different
GSVD (or equivalently two weighted PCA), one performed on the row profiles (i.e.,
the matrix R) and the other one on the column profiles (i.e., the matrix C).

This way, the factor scores are obtained from the GSVD of the matrix of the
row profiles matrix (i.e., R) as:

D−1
r

(
Z− rcT)= (

R−1cT)= PR∆QT with PT
RDrPR = QTD−1

c Q = I (45)
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where PR contains the left generalized singular vectors of the row profile matrix
R. We can link the decomposition of the row profile matrix to the centered data
as:

PR = D−1
r P, F = PR∆= D−1

r P∆, and G = D−1
c Q∆ ; (46)

But these factor scores can also be obtained from the GSVD of the matrix of the
column profiles (i.e., matrix C) as:(

Z− rcT)D−1
c =

(
C−1cT)= P∆QT

C with PTD−1
r P = QT

CDcQC = I (47)

where QC contains the right generalized singular vectors of the column profile
matrix C. We can link the decomposition of the column profile matrix to the
centered data as:

F = D−1
c P∆, QC = D−1

c Q and G = QC∆= D−1
c Q∆. (48)

Within the framework of generalized PCA, Equations 44, 46, and 48 show,
together, that the matrices of the principal factor scores can be obtained as linear
combinations of the row (respectively column) profile matrix as (respectively):

F = RD−1
c Q and G = CTD−1

r P . (49)

In this framework, the matrix D−1
c Q (respectively D−1

r P) that stores the coeffi-
cients of the linear combinations of the columns of R (respectively CT) is called
the matrix of the row-weights (respectively column-weights). Note that the weight
matrix for one set (e.g., matrix D−1

c Q for the rows) is the matrix of the standard
coordinates for the other set (i.e., G∗ = D−1

c Q, see Equation 33).
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