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Abstract Emotions and non-driving related cognitive
tasks affect a driver’s control over a vehicle and may result in
driving errors and traffic accidents. Presence of a monitoring
device that would assess driver’s state could help reduce such
errors by providing the driver with alerts and directing other
in-vehicle active safety devices. The focus of this study is on
the evaluation of speech production-based and cepstral-based
acoustic features for the task of emotion and cognitive load
classification in real driving scenarios. The newly proposed
classifiers utilize support vector machine (SVM) based fusion
of raw features and Gaussian mixture model (GMM) scores
and provide classification performance of 79 % and 95.2 % in
the task of neutral vs. negative emotion classification and two
cognitive tasks classification, respectively.

Keywords Driving scenarios, cognitive load, emotions,
speech production variations, SVM fusion.

1. INTRODUCTION

Distraction due to increased, non-driving related cognitive
load as well as emotions impact driver performance and are
frequent causes of driving errors [1], [2]. Presence of an
in-vehicle monitoring system that would assess driver’s emo-
tional state and cognitive load could considerably help reduce
such errors by: (i) issuing alerts to the driver, (ii) directing
other in-vehicle devices (e.g., decreasing frequency of na-
vigation prompts, controlling loudness of the audio system,
etc.), (iii) collaborating with other components of the active
safety system. The focus of this study is on the assessment of
drivers’ emotional state and cognitive load from speech.

Emotion recognition has been receiving increased attenti-
on in the speech community [3,4,5,6,7]. The impact of stress
in speech (including cognitive task stress) has also been wi-
dely studied [8,9,10]. In spite of these efforts, a limited body
of literature has considered the impact of stress and emotions
on drivers.

Studies on driver state assessment typically utilize dri-
ving simulators rather than real driving scenarios and pre-
valently focus on the analysis of physiological and EEG si-
gnals [11,12], even though speech-based assessment has also
been considered in several cases [13, 14, 15] in the context
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of cognitive tasks and emotional state classification. Clearly,
driving simulators give researches good control over the indu-
ced scenarios without jeopardizing the driver’s safety. On the
other hand, it is not clear to what extent the simulator data re-
flect the real conditions where driving errors may have severe
consequences.

The focus of this study is on the analysis and assessment
of driver’s speech acquired in real driving conditions. It ex-
tends our previous efforts presented in [16, 17]. Compared
to [16], the number of analyzed subjects was increased from
15 to 68 and the scope was extended for emotion classifica-
tion. The classification experiments of [17] are extended in
this paper for the use of the state-of-the-art perceptually mo-
tivated minimum variance distortionless response (PMVDR)
feature extraction front-end, which is shown to provide supe-
rior performance to the best system in [17] in the cognitive
task classification.

Two cognitive load tasks considered in this study are re-
presented by communication with a passenger versus inter-
action with two commercial dialog systems. Two emotional
states, neutral and negative, where the negative state is indu-
ced by errors of the dialog system, are analyzed. Performance
of selected speech production and cepstral acoustic features is
compared in the classification of cognitive task and emotions.

The remainder of the paper is organized as follows. First,
data sets used in the study are described. Subsequently, an
approach to the cognitive task and emotion classification is
proposed. Finally, experimental results are presented and dis-
cussed.

2. UTDRIVE CORPUS

This study is conducted on 68 driver sessions (33 females and
35 males) from the UTDrive database [18]. UTDrive captu-
res recordings of real driving through urban areas in Richard-
son, TX. The driving routes comprise secondary, service, and
main roads in residential and business districts. The vehic-
le used in the data acquisition was Toyota RAV4 equipped
with microphones, CCD cameras monitoring the driver and
the road scene, optical distance sensor, GPS, CAN-Bus OBD
II port for speed measurement, steering wheel angle, gas and
brake inputs from driver, and gas and brake pedal pressure
sensors. Speech signal from the microphone mounted above
the windshield is utilized in the experiments.
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During the driving sessions, the subjects were asked to
perform a sequence of secondary (i.e., non-driving related)
tasks such as sign reading, operating a radio and AC, talking
to a passenger, and calling to two commercial automated dia-
log systems. The two dialog systems were: (i) American Air-
lines – online flight departure/arrival information system, and
(ii) Tell ME – general information system (weather, game sco-
res, movie theaters, etc.). In this paper, the driver interaction
with the passenger and the dialog systems is studied.

3. PROPOSED APPROACH TO
EMOTION/COGNITIVE LOAD TASK

CLASSIFICATION

3.1. Emotional States and Cognitive Tasks

Following [16, 17], two emotional states and two cognitive
tasks are studied in this paper. While calling the automated
dialog systems, the users are frequently asked to repeat their
queries. This is partly due to the confusion on the user’s si-
de about how to communicate with the system and in part
due to the errors produced by the automatic speech recogni-
tion (ASR) within the dialog system. Intuitively, both types
of errors are likely to occur more frequently when the user’s
attention is split between driving a vehicle and communica-
ting with the system, and while the ASR engine is exposed to
increased background noise.

Frequent requests of the dialog system for query repetiti-
ons may induce negative emotions in drivers. In our previous
study [17], two broad emotional classes – neutral and negati-
ve, were introduced to categorize the UTDrive speech samp-
les obtained during the interactions with the dialog systems.
Emotion labels were assigned to each conversational turn ba-
sed on subjective judgment of an expert annotator. The pro-
portion of negative interactions with the dialog system, with
respect to the number of requested repetitions per query, is
shown in Table 1 (F and M denote female and male subjects
respectively; Re0 – no repetition, Re1 – 1st repetition, Re2-6
– 2nd–6th repetitions).

Table 1. Proportion of negative conversational turns in auto-
mated dialog system interactions.

% of Negative Queries 
Query Females Males 

All 38.1 17.6 
Re0 23.9 8.8 
Re1 65.9 47.2 

Re2-6 78.3 60.0 

It is difficult to quantify the absolute level of cognitive
load in individuals, however, it may be argued that some ty-
pes of tasks are likely to induce higher cognitive load than

others. In our case, the focus is on the driver’s interactions
with a passenger and on the interactions with the automated
dialog systems. In UTDrive, the passenger interactions we-
re of a relaxed nature and the discussed topics did not re-
quire any extensive focus (discussing weather, etc.). On the
other hand, the interactions with the dialog system through a
cell phone comprised a sequence of steps that needed to be
correctly carried out to fulfill the task, including holding the
phone, dialing the number, and navigating through the me-
nu of the dialog system. Further cognitive load was induced
when the subject consciously tried to reformulate the query
and altered the talking style to become more intelligible to
the system. For the purpose of cognitive load labeling of the
conversational turns, similar to [16, 17], we apply cause-type
annotation [13] of the cognitive load and map cognitive load
labels to individual tasks – co-driver interactions (low cogniti-
ve load) and dialog system interactions (high cognitive load).

3.2. Speech Production Model-Based Features

A number of speech production parameters is known to be
sensitive to emotions and stress [9, 3, 19]. In [17], the follo-
wing speech production factors were analyzed in the context
of UTDrive sessions: mean utterance fundamental frequen-
cy F0, first four formant center frequencies in voiced speech
segments F1−4, spectral slope, duration of voiced segments,
spectral center of gravity (SCG), and spectral energy spread
(SES). SCG is defined

SCG =

N∑
k=1

X (k) · k
N∑

k=1

X (k)
(1)

where k is the discrete frequency and X (k) amplitude of the
corresponding spectral bin. Spectral energy spread is defined
for the spectral energy distribution as a frequency interval of
one standard deviation from SCG

SES =

√√√√√√√√

N∑
k=1

X (k) · (k − SCG)2

N∑
k=1

X (k)
(2)

and is expected to be sensitive to changes in energy distributi-
on across the frequency axis. The following was found out in
the statistical tests in [17] for the production parameter varia-
tion across cognitive tasks, emotions, and number of repeated
queries:

• Passenger (low cognitive load) vs. dialog system (high
cognitive load) interactions: F0, F1, F4, SCG, SES,
duration – significant increase; F2,3, spectral slope –
no significant effects;
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Fig. 1. Extraction of PLP and Expolog cepstral features.

• Neutral vs. negative emotion interactions: F0, SCG,
duration – significant increase; F1−4, SES, spectral
slope – no significant effects;

• Effect of requested query repetition interactions: F0 –
significant interaction; F1−4, SCG, SES, duration,
spectral slope – no significant effects.

It is noted that spectral slope is typically reported in litera-
ture to be sensitive to emotions and stress [9,20]. In our study,
the ‘steadiness’ of spectral slope is most probably caused by a
prominent car noise energy content present at low frequencies
of the amplitude spectrum (see details in [16]).

3.3. Cepstral Acoustic Features

In addition to speech production model-based features, sui-
tability of several cepstral-based features, borrowed from the
ASR domain, for the cognitive load and emotion classification
is evaluated. In particular, mel frequency cepstral coefficients
(MFCC) [21], perceptual linear prediction (PLP) [22], Expo-
log cepstral coefficients [23], and perceptually motivated mi-
nimum variance distortionless response (PMVDR) cepstral
coefficients [24] are compared. Expolog and PMVDR were
demonstrated to provide promising performance in stressed
speech recognition. Expolog cepstra employ a triangular filter
bank distributed on exponential-logarithmic frequency scale

Expolog (f) =

⎧⎨
⎩

700 ·
(
10

f
3988 − 1

)
0 � f � 2000Hz,

2596 · log
(
1 + f

100

)
f > 2000Hz.

(3)
The Expolog filter bank is used in this study as a replace-
ment of the trapezoid filter bank in the PLP feature extraction
scheme (see Fig. 1). The PMVDR feature extraction utilizes
a minimum variance distortionless response (MVDR) spec-
tral estimator to represent the upper envelope of the speech
signal. Unlike in other cepstral front-ends considered in this
study, PMVDR (see block scheme in Fig. 2) does not employ
any filter bank and performs frequency warping by directly in-
terpolating the amplitude spectrum. In addition, two variants
of MFCC and PLP, where discrete cosine transform cepstrum
was replaced by linear prediction cepstrum (MFCC-LPC) and
vice-versa (PLP-DCT) are considered in the experiments.

3.4. SVM-Based Feature Fusion

A Gaussian mixture model (GMM) based maximum a po-
steriori classifier is used in the baseline classification experi-
ments. Here, selected features are used to parameterize speech
signal. Separate GMM’s are trained for each class (low/high
cognitive load, neutral/negative emotions). Test samples are
scored against each of the GMM’s and a resulting class is
assigned based to the ratio of the GMM likelihoods compa-
red to the decision threshold. Cepstral features are extracted
on the frame level (25 ms window/10 ms step); each frame is
scored against the individual GMM’s. The final class decisi-
on for a conversational turn is based on the overall likelihood
across all frames of the turn. In the case of speech production
features, mean feature values are extracted across the conver-
sational turn, yielding a single feature vector for scoring.

Fusion of cepstral and speech production-based features
is conducted using a support vector machine (SVM) classi-
fier. Depending on the experimental setup, the input to the
SVM classifier is formed by the combination of likelihood
scores from the GMM’s and raw speech production features
(see Fig. 3). There are two parameters in the SVM frame-
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Fig. 3. SVM-based fusion of cepstral and speech production
features.

work that require to be tuned to optimize the classification
performance. The first one is the penalty parameter C which
determines the trade-off between margin maximization and
training error minimization. The second parameter, γ, is in-
versely proportional to the Gaussian kernel width. These pa-
rameters are first optimized on the training data using a 5-fold
cross validation strategy and a grid search in the intervals of
log2 γ ∈ {−15,−14.5, ..., 3}, log2 C ∈ {15, 14.5, ...,−3}
and then used for open test set classification. Fig. 4 illustra-
tes an example of such a parameter selection. It shows clas-
sification accuracy contours obtained from a grid search for
several parameter sets. In this example, the inner-most con-
tour represents the highest performance obtained for the pa-

Bořil, Sadjadi, Hansen – 3



5th Biennial Workshop on DSP for In-Vehicle Systems, Kiel, Germany, 2011

2

TEMPORAL
DERIVATIVES

FRAME
BLOCKING

Δc

ΔΔc

c

s
IFFT|FFT|WINDOWING Perceptual

Warping

Log
Compression

IFFT Levinson
Durbin

Hamming

"Perceptual"
Autocorrelation

win_size shift

FFT

 PRE−
EMPHASIS

Model order(P)

Warping Parameter (α)

Conversion
LP−to−MVDR

Fig. 2. PMVDR feature extraction scheme (after [24]).

rameter set log2 C = 13, log2 γ = −6. SVM has a poten-
tial to provide further performance gains compared to pure
GMM/decision threshold classification since here, the decisi-
on hyperplane in the feature space is searched in a discrimi-
native training process as opposed to the generative training
of GMM models and the usage of a scalar decision threshold.
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Fig. 4. Example of SVM parameter selection: classification
accuracy contours; train set.

4. EXPERIMENTAL RESULTS

For both cognitive load and emotion classification experi-
ments, samples from 40 speaker sessions (20 per gender)
were used to train the GMM acoustic models. The remai-
ning 28 sessions were used for open test set evaluations. The
results of all experiments are reported by means of equal
accuracy rate (EAR) where the class decision threshold is set
to provide as close classification accuracy for both classes as
possible and the class accuracies are subsequently averaged.
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Fig. 5. Emotion classification – performance of cepstral-
based GMM classifiers.

4.1. Emotion Classification

The results of neutral/negative emotion classification are sum-
marized in Figures 5–7 and Table 2. Fig. 5 shows the perfor-
mance of GMM classifiers utilizing cepstral-based feature ex-
traction front-ends. It can be seen that the best performance is
established by PLP and Expolog systems at EAR of 69.3 %.

Performance of the best production feature-based GMM
classifiers (see Fig. 6) considerably exceeds the one of the
cepstral-based systems. The combination of F0, SCG, and
duration yields 78.1 % EAR. Fig. 7 summarizes the perfor-
mance of selected SVM-based classifiers. The best system
utilizes likelihood scores of GMM’s trained on a feature vec-
tor comprising F0, SCG, and duration and provides EAR of
79 %. Note that here, SVM demonstrates its potential in fin-
ding a class-decision boundary that is more effective than the
scalar decision threshold used in the GMM a posteriori clas-
sifier.
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4.2. Cognitive Task Classification

The results of passenger (low cognitive load) vs. dialog sy-
stem (high cognitive load) classification are detailed in Figu-
res 8–10 and summarized in Table 3. Fig. 8 presents perfor-
mance of GMM classifiers utilizing cepstral-based features.
The best performance is established by PMVDR with EAR
of 94.3 %.

Unlike in the emotion classification task, performance of
the best production feature-based GMM classifiers (see Fig.
9) is somewhat lower than that of cepstral-based systems.
Using mean SCG as a single speech signal descriptor yields
90.0 % EAR. Combination of SCG with other parameters
yields either similar or lower performance.

Fig. 10 summarizes performance of selected SVM-based
classifiers. The best system utilizes likelihood scores of
GMM’s trained on PMVDR, likelihood scores of SCG, and
raw SCG values (EAR of 95.2 %). It is noted that this system
outperforms the best system in [17].

Table 2. Emotion classification – comparison of all systems.
Emotion Classification 

Domain Features EAR (%) 
MFCC 66.9 

MFCC-LPC 66.9 
PLP 69.3 

PLP-DCT 66.4 
Expolog 69.3 

Cepstral
Features 

PMVDR 66.9 
F0 73.2 

SCG 62.2 
Dur 57.0 

F0+SCG 75.7 

Speech 
Production

Model
Features 

F0+SCG+Dur 78.1 
F0+SCG+Dur Features 73.4 
F0+SCG+Dur Scores 79.0 

F0+SCG+Dur Features/Scores 73.4 SVM
Fusion

F0+SCG+Dur Features/Scores + 
Expolog Scores 75.0

5. CONCLUSIONS

This study compared efficiency of selected speech production
and cepstral-based features for neutral/negative emotion and
low/high cognitive load classification. The experiments uti-
lized samples from 68 subjects acquired in real driving sce-
narios. In the emotion classification task, speech production
features provided better class discriminability than cepstral
features. The best performance was provided by an SVM clas-
sifier that utilizes class-specific GMM likelihoods as its input.
This scheme yielded 79.0 % equal accuracy for a setup with
F0, SCG, and duration forming the input feature vector. In

92

94

95

MFCC MFCC-
LPC

PLP PLP-DCT Expolog PMVDR

Cognitive Task Classification
Cepstral Features

E
qu

al
 A

cc
ur

ac
y 

R
at

e 
- E

A
R

 (%
)

Fig. 8. Cognitive task classification – performance of cepstral-
based GMM classifiers.
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the case of cognitive task classification, the best performan-
ce, EAR of 95.2 %, was provided by the fusion of cepstral
(PMVDR) based GMM likelihoods and SCG raw values and
GMM likelihoods.
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