A Quest for the Perfect Mixing Diagnostic

Lynn Melton
University of Texas at Dallas

Chuck Lipp, Kouchen Tsai, and Paul W. Gillis
Dow Chemical Company

Mixing XVIII June 24-29, 2001
Advisory Message

- This presentation has been approved by Dave Dickey for post-banquet presentation.
- It does not contain partial derivatives, Rushton turbines, CFD validation plots, or Re to a fractional power.
- It has lots of PICTURES!
There is no “perfect diagnostic”

- What do you want to know?
There is no “perfect diagnostic”

- What do you want to know?
 - Everything
There is no “perfect diagnostic”

- What do you want to know?
 - Nearly everything, but definitely reaction-based, as a function of space and time
There is no “perfect diagnostic”

- What do you want to know?
 - Nearly everything, but definitely reaction-based, as a function of space and time

- What do you really want?
 - engineering insight, or
 - quantitative tests of modeling and CFD
Diagnostics for engineering insight should be ...

- incisive but not necessarily quantitative
- simple to use for iterative runs
- cheap, “simple” chemistry
- colorimetric
- captured on videotape
Diagnostics for engineering insight examples...

- DISMT (dual indicator system for mixing time)
 - red/yellow/blue-green; acid/base reactions
- FOB (formation of byproduct)
 - clear, green, blue, purple, red; complexation reactions
DISMT
Dual Indicator System for Mixing Time

• Colors can provide quantitative information.

• Mix red liquid with blue liquid
• Obtain yellow liquid only when mixture is within ±5% of ideal mixing
• Acid-base reaction with two indicators (methyl red and thymol blue)
• Must adjust initial pH’s carefully

• MIXING TIME = time for entire solution to turn yellow
Jet mixing

(1) Jet of base (blue) from lower right into acid (red)

Base accumulates at lower left

Where will yellow first appear?
Jet mixing

(2) Acid core (red); base circulates clockwise

Yellow first appears at top right.
(3) Acid core (orange) mixes slowly with zone of base (blue) at left
Jet mixing

(4) After external mixing, solution is uniformly yellow.
FOB
Formation of Byproduct

• Form successive complexes of Ni(II) [=M] with 2,2’-bipyridine (BIPY)[=L]
• Colors: clear (L), light green (M), blue (ML), purple (ML₂), red (ML₃)
• The complexation reactions are reversible; equilibrium composition can be obtained.
FOB Reactions (sequential)

Ni(II) BIPY 1 : 1

1 : 1 + 1 : 1 BIPY 1 : 1

1 : 2 + 1 : 2 BIPY 1 : 2 desired product

byproduct
Jet Mixing Demonstration

Apparatus
Jet Mixing Demonstration

Ni(II)

byproduct

1 : 2
poor mixing

product

1 : 2
complete mixing
Quantitative tests of CFD should be ...

- a ternary effort
 - CFD
 - flows
 - diagnostics
- iterative and interactive
- carefully designed and rigorously evaluated.
Diagnostics for quantitative tests of CFD should be ...

- quantitative (what level??)
- simultaneous PIV/PLIF (correlated velocity and concentration fields)
- known, tunable reaction rates
- high spatial resolution
- captured on digital cameras
Diagnostics for quantitative tests of CFD at Dow Mixing Lab...

- ✔ quantitative (5% ?)
- ✔ ✔ simultaneous PIV/PLIF (correlated velocity and concentration field)
- ? known, tunable reaction rates
- ✔ high spatial resolution
- ✔ captured on digital cameras
Simultaneous PIV/PLIF

532 nm Pulsed Laser (Nd:YAG)

Particle Image Velocimetry
Seed: Hollow glass spheres coated with silver

PLIF Camera
Filter
Planar Laser Induced Fluorescence
Dye- Rhodamine WT

PIV Camera
Filter
PLIF Advice

- ALWAYS run “optically thin” so that the laser intensity is not attenuated by absorption in the flow.
- $A = \varepsilon c l < 0.04$ yields less than 10% change in laser intensity across the flow.
- Many non-idealities either disappear or can be ratioed out.
Rhodamine-WT

- Strong absorption at 532 nm
- Fluorescence maximum at 590 nm
- High quantum yield
- Cheap
- Very low toxicity (much lower than Rh-B)
- Fluorescence has weak dependence on pH.
Reacting PLIF

- Fe(II) + H₂O₂ \implies Fe(III) + OH⁻ + OH • (Fenton’s Reagent)
- OH • + Rh-WT \implies non-fluorescent
- Plus more reactions
- Irreversible kinetics
- Rh-WT disappears with time constant of 1-20 ms (??)
- Currently working on simplified kinetic scheme
Rhodamine-WT and Fenton’s Reagent

- Solution A: Rh-WT + Fe(II) fluorescent
- Solution B: Rh-WT + H$_2$O$_2$ fluorescent
- Both solutions are stable over an hour.
- “on” + “on” ==> “off” (different but not a problem)
Pulsed PLIF images of Fe(II)/H₂O₂ reaction zone. Lightest contour corresponds to 10% reaction; darkest to 80%.

Reaction time constant is 10-20 ms; flow time through cell is 200 ms.
ZOMM
zone of molecular mixing

- “off - on - off” with a tunable “time on” of 2-20 ms (pulse in pH)
- fluorescence image shows where mixing/reaction is taking place
- modest kinetic scheme
- might be ready in Fall 2001
Formation of Byproduct

- Capture PLIF images of byproduct formation (and also primary product ?)
- Would like to have tunable ratio of byproduct rate to primary rate
- At least a year away
Reaction rate

- Make fluorescence intensity at particular wavelength proportional to overall reaction rate
- Currently in the concept stage
Back to the Quest...

- Do not limit yourself by asking “What has been used previously?”
- Instead, ask “For my work, what reaction/concentration quantity would provide the most incisive test?
- I love to collaborate.
...for the perfect diagnostic

- PIV and reactive PLIF-FOB with
 - tunable, simple kinetics
 - detection of both the primary product and the byproduct
 - variable viscosities
- CFD would be tested against the flow pattern and two reactions.
Acknowledgements

- Min Zhan (FOB), Vern Porter, Bob Spradling, Rob Larkins

- Dow Chemical Company

- Texas Higher Education Coordinating Board - Advanced Technology Program