• The Priority Queue Abstract Data Type

• Implementing A Priority Queue With a Sequence
Keys and Total Order Relations

- A Priority Queue ranks its elements by key with a total order relation

• Keys:
 - Every element has its own key
 - Keys are not necessarily unique

• Total Order Relation
 - Denoted by \(\leq \)
 - Reflexive: \(k \leq k \)
 - Antisymmetric: if \(k_1 \leq k_2 \) and \(k_2 \leq k_1 \), then \(k_1 \leq k_2 \)
 - Transitive: if \(k_1 \leq k_2 \) and \(k_2 \leq k_3 \), then \(k_1 \leq k_3 \)

• A Priority Queue supports these fundamental methods:
 - `insertItem(k, e)` // element e, key k
 - `removeMinElement()` // return and remove the // item with the smallest key
A Priority Queue P can be used for sorting by inserting a set S of n elements and calling $\text{removeMinElement()}$ until P is empty:

Algorithm PriorityQueueSort(S, P):

Input: A sequence S storing n elements, on which a total order relation is defined, and a Priority Queue P that compares keys with the same relation

Output: The Sequence S sorted by the total order relation

```
while !S.isEmpty() do
    e ← S.removeFirst()
    P.insertItem(e, e)
while P is not empty do
    e ← P.removeMinElement()
    S.insertLast(e)
```
The Priority Queue ADT

- A priority queue \(P \) must support the following methods:

- **size()**: Return the number of elements in \(P \)

 Input: None;
 Output: integer

- **isEmpty()**: Test whether \(P \) is empty

 Input: None;
 Output: boolean

- **insertItem\((k,e)\)**: Insert a new element \(e \) with key \(k \) into \(P \)

 Input: Objects \(k, e \);
 Output: None

- **minElement()**: Return (but don’t remove) an element of \(P \) with smallest key; an error occurs if \(P \) is empty.

 Input: None;
 Output: Object \(e \)
The Priority Queue ADT (contd.)

- **minKey():**
 Return the smallest key in P; an error occurs if P is empty
 Input: None; **Output:** Object k

- **removeMinElement():**
 Remove from P and return an element with the smallest key; an error condition occurs if P is empty.
 Input: None; **Output:** Object e
Comparators

• The most general and reusable form of a priority queue makes use of comparator objects.

• Comparator objects are external to the keys that are to be compared and compare two objects.

• When the priority queue needs to compare two keys, it uses the comparator it was given to do the comparison.

• Thus a priority queue can be general enough to store any object.

• The comparator ADT includes:
 - isLessThan\((a, b)\)
 - isLessThanOrEqualTo\((a, b)\)
 - isEqualTo\((a, b)\)
 - isGreaterThan\((a, b)\)
 - isGreaterThanOrEqualTo\((a, b)\)
 - isComparable\((a)\)
Implementation with an Unsorted Sequence

• Let’s try to implement a priority queue with an unsorted sequence S.

• The elements of S are a composition of two elements, k, the key, and e, the element.

• We can implement `insertItem()` by using `insertFirst()` of the sequence. This would take $O(1)$ time.

• However, because we always `insertFirst()`, despite the key value, our sequence is not ordered.
Implementation with an Unsorted Sequence (contd.)

• Thus, for methods such as `minElement()`, `minKey()`, and `removeMinElement()` , we need to look at all elements of S. The worst case time complexity for these methods is $O(n)$.
Implementation with a Sorted Sequence

- Another implementation uses a sequence S, sorted by keys, such that the first element of S has the smallest key.

- We can implement `minElement()`, `minKey()`, and `removeMinElement()` by accessing the first element of S. Thus these methods are $O(1)$ (assuming our sequence has an $O(1)$ front-removal)

- However, these advantages comes at a price. To implement `insertItem()`, we must now scan through the entire sequence. Thus `insertItem()` is $O(n)$.
public class SequenceSimplePriorityQueue implements SimplePriorityQueue {

 //Implementation of a priority queue using a sorted sequence
 protected Sequence seq = new NodeSequence();
 protected Comparator comp;

 // auxiliary methods
 protected Object extractKey (Position pos) {
 return ((Item)pos.element()).key();
 }

 protected Object extractElem (Position pos) {
 return ((Item)pos.element()).element();
 }

 protected Object extractElem (Object key) {
 return ((Item)key).element();
 }

 // methods of the SimplePriorityQueue ADT
 public SequenceSimplePriorityQueue (Comparator c) {
 this.comp = c;
 }

 public int size () {return seq.size();}
}
public boolean isEmpty () { return seq.isEmpty(); }
public void insertItem (Object k, Object e) throws InvalidKeyException {
 if (!comp.isComparable(k))
 throw new InvalidKeyException("The key is not valid");
 else
 if (seq.isEmpty())
 seq.insertFirst(new Item(k,e));
 else
 if (comp.isGreaterThan(k,extractKey(seq.last())))
 seq.insertAfter(seq.last(),new Item(k,e));
 else {
 Position curr = seq.first();
 while (comp.isGreaterThan(k,extractKey(curr))
 curr = seq.after(curr);
 seq.insertBefore(curr,new Item(k,e));
 }
}
public Object minElement () throws EmptyContainerException {
 if (seq.isEmpty())
 throw new EmptyContainerException("The priority queue is empty");
 else
 return extractElem(seq.first());
}
Selection Sort

- Selection Sort is a variation of PriorityQueueSort that uses an unsorted sequence to implement the priority queue P.

- **Phase 1**, the insertion of an item into P takes $O(1)$ time.

- **Phase 2**, removing an item from P takes time proportional to the number of elements in P

<table>
<thead>
<tr>
<th>Phase 1:</th>
<th>Sequence S</th>
<th>Priority Queue P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>(7, 4, 8, 2, 5, 3, 9)</td>
<td>()</td>
</tr>
<tr>
<td>Phase 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(4, 8, 2, 5, 3, 9)</td>
<td>(7)</td>
</tr>
<tr>
<td>(b)</td>
<td>(8, 2, 5, 3, 9)</td>
<td>(7, 4)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(g)</td>
<td>()</td>
<td>(7, 4, 8, 2, 5, 3, 9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 2:</th>
<th>Sequence S</th>
<th>Priority Queue P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(2)</td>
<td>(7, 4, 8, 5, 3, 9)</td>
</tr>
<tr>
<td>(b)</td>
<td>(2, 3)</td>
<td>(7, 4, 8, 5, 9)</td>
</tr>
<tr>
<td>(c)</td>
<td>(2, 3, 4)</td>
<td>(7, 8, 5, 9)</td>
</tr>
<tr>
<td>(d)</td>
<td>(2, 3, 4, 5)</td>
<td>(7, 8, 9)</td>
</tr>
<tr>
<td>(e)</td>
<td>(2, 3, 4, 5, 7)</td>
<td>(8, 9)</td>
</tr>
<tr>
<td>(f)</td>
<td>(2, 3, 4, 5, 7, 8)</td>
<td>(9)</td>
</tr>
<tr>
<td>(g)</td>
<td>(2, 3, 4, 5, 7, 8, 9)</td>
<td>()</td>
</tr>
</tbody>
</table>
Selection Sort (cont.)

- As you can tell, a bottleneck occurs in Phase 2. The first `removeMinElement` operation takes \(O(n) \), the second \(O(n-1) \), etc. until the last removal takes only \(O(1) \) time.

- The total time needed for phase 2 is:
 \[
 O(n + (n - 1) + \ldots + 2 + 1) = O \left(\sum_{i=1}^{n} i \right)
 \]

- By a common proposition:
 \[
 \sum_{i=1}^{n} i = \frac{n(n+1)}{2}
 \]

- The total time complexity of phase 2 is then \(O(n^2) \). Thus, the time complexity of the algorithm is \(O(n^2) \).
Insertion Sort

- Insertion sort is the sort that results when we perform a PriorityQueueSort implementing the priority queue with a sorted sequence.

- We improve phase 2 to $O(n)$.

- However, phase 1 now becomes the bottleneck for the running time. The first `insertItem` takes $O(1)$, the second $O(2)$, until the last operation takes $O(n)$.

- The run time of phase 1 is $O(n^2)$ thus the run time of the algorithm is $O(n^2)$.
• Selection and insertion sort both take $O(n^2)$.

• Selection sort will always take $\Omega(n^2)$ time, no matter the input sequence.

• The run of insertion sort varies depends on the input sequence.

• We have yet to see the ultimate priority queue....

<table>
<thead>
<tr>
<th></th>
<th>Sequence S</th>
<th>Priority Queue P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>(7, 4, 8, 2, 5, 3, 9)</td>
<td>()</td>
</tr>
<tr>
<td>Phase 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(4, 8, 2, 5, 3, 9)</td>
<td>(7)</td>
</tr>
<tr>
<td>(b)</td>
<td>(8, 2, 5, 3, 9)</td>
<td>(4, 7)</td>
</tr>
<tr>
<td>(c)</td>
<td>(2, 5, 3, 9)</td>
<td>(4, 7, 8)</td>
</tr>
<tr>
<td>(d)</td>
<td>(5, 3, 9)</td>
<td>(2, 4, 7, 8)</td>
</tr>
<tr>
<td>(e)</td>
<td>(3, 9)</td>
<td>(2, 4, 5, 7, 8)</td>
</tr>
<tr>
<td>(f)</td>
<td>(9)</td>
<td>(2, 3, 4, 5, 7, 8)</td>
</tr>
<tr>
<td>(g)</td>
<td>()</td>
<td>(2, 3, 4, 5, 7, 8, 9)</td>
</tr>
<tr>
<td>Phase 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(2)</td>
<td>(3, 4, 5, 7, 8, 9)</td>
</tr>
<tr>
<td>(b)</td>
<td>(2, 3)</td>
<td>(4, 5, 7, 8, 9)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(g)</td>
<td>(2, 3, 4, 5, 7, 8, 9)</td>
<td>()</td>
</tr>
</tbody>
</table>
Heaps

• A **Heap** is a Binary Tree \(H \) that stores a collection of keys at its internal nodes and that satisfies two additional properties:
 - 1) **Heap-Order Property**
 - 2) **Complete Binary Tree Property**

• **Heap-Order Property Property (Relational):** In a heap \(H \), for every node \(v \) (except the root), the key stored in \(v \) is greater than or equal to the key stored in \(v \)'s parent.

• **Complete Binary Tree Property (Structural):** A Binary Tree \(T \) is complete if each level but the last is full, and, in the last level, all of the internal nodes are to the left of the external nodes.
Heaps (contd.)

• An Example:
Height of a Heap

- **Proposition:** A heap H storing n keys has height
 \[h = \lceil \log(n+1) \rceil \]

- **Justification:** Due to H being complete, we know:
 - # i of internal nodes is at least:
 \[1 + 2 + 4 + \ldots + 2^{h-2} + 1 = 2^{h-1} - 1 + 1 = 2^{h-1} \]
 - # i of internal nodes is at most:
 \[1 + 2 + 4 + \ldots + 2^{h-1} = 2^{h} - 1 \]
 - Therefore:
 \[2^{h-1} \leq n \text{ and } n \leq 2^{h} - 1 \]
 - Which implies that:
 \[\log(n + 1) \leq h \leq \log n + 1 \]
 - Which in turn implies:
 \[h = \lfloor \log(n+1) \rfloor \]
 - Q.E.D.
Heigh of a Heap (contd.)

- Let’s look at that graphically:

Consider this heap which has height $h = 4$ and $n = 13$

Suppose two more nodes are added. To maintain completeness of the tree, the two external nodes in level 4 will become internal nodes: i.e. $n = 15, h = 4 = \log(15+1)$

Add one more: $n = 16, h = 5 = \lceil \log(16+1) \rceil$
Insertion into a Heap (cont.)

Priority Queues
Insertion into a Heap (cont.)

(4,C)
(5,A)
(15,K)
(16,X)
(15,K)
(25,J)
(14,E)
(12,H)
(11,S)
(8,W)
(7,Q)
(6,Z)
(2,T)
(20,B)
(4,C)
(5,A)
(15,K)
(16,X)
(25,J)
(14,E)
(12,H)
(11,S)
(8,W)
(7,Q)
(6,Z)
(2,T)
(20,B)
Insertion into a Heap (cont.)

Priority Queues
Removal from a Heap

(4,C) (13,W)

(5,A) (6,Z)

(15,K) (9,F)

(25,J) (14,E) (12,H)

(16,X) (11,S)
Removal from a Heap (cont.)

(13, W)
Removal from a Heap (cont.)
Removal from a Heap (cont.)

Priority Queues
Implementation of a Heap

public class HeapSimplePriorityQueue implements SimplePriorityQueue {
 BinaryTree T;
 Position last;
 Comparator comparator;
 ...
}

Priority Queues
Implementation of a Heap (cont.)

- Two ways to find the insertion position z in a heap:

a)

b)
Heap Sort

- All heap methods run in logarithmic time or better
- If we implement PriorityQueueSort using a heap for our priority queue, `insertItem` and `removeMinElement` each take $O(\log k)$, k being the number of elements in the heap at a given time.
- We always have n or less elements in the heap, so the worst case time complexity of these methods is $O(\log n)$.
- Thus each phase takes $O(n\log n)$ time, so the algorithm runs in $O(n\log n)$ time also.
- This sort is known as heap-sort.
- The $O(n\log n)$ run time of heap-sort is much better than the $O(n^2)$ run time of selection and insertion sort.
Bottom-Up Heap Construction

• If all the keys to be stored are given in advance we can build a heap bottom-up in $O(n)$ time.

• Note: for simplicity, we describe bottom-up heap construction for the case for n keys where:

$$n = 2^h - 1$$

h being the height.

• Steps:
 1) Construct $(n+1)/2$ elementary heaps with one key each.
 2) Construct $(n+1)/4$ heaps, each with 3 keys, by joining pairs of elementary heaps and adding a new key as the root. The new key may be swapped with a child in order to preserve heap-order property.
 3) Construct $(n+1)/8$ heaps, each with 7 keys, by joining pairs of 3-key heaps and adding a new key. Again swaps may occur.
 ...
 4) In the ith step, $2 \leq i \leq h$, we form $(n+1)/2^i$ heaps, each storing $2^i - 1$ keys, by joining pairs of heaps storing $(2^{i-1} - 1)$ keys. Swaps may occur.
Bottom-Up Heap Construction (cont.)
Bottom-Up Heap Construction (cont.)
Bottom-Up Heap Construction (cont.)
Bottom-Up Heap Construction (cont.)

The End
Analysis of Bottom-Up Heap Construction

- **Proposition**: Bottom-up heap construction with n keys takes $O(n)$ time.
 - Insert $(n + 1)/2$ nodes
 - Insert $(n + 1)/4$ nodes
 - Upheap at most $(n + 1)/4$ nodes 1 level.
 - Insert $(n + 1)/8$ nodes
 - ...
 - Insert 1 node.
 - Upheap at most 1 node 1 level.

- n inserts, $n/2$ upheaps of 1 level = $O(n)$
Locators

- Locators can be used to keep track of elements in a container
- A locator sticks with a specific key-element pair, even if that element “moves around”.
- The Locator ADT supports the following fundamental methods:

 - **element()**: Return the element of the item associated with the Locator.
 - **Input**: None; **Output**: Object

 - **key()**: Return the key of the item associated with the Locator.
 - **Input**: None; **Output**: Object

 - **isContained()**: Return true if and only if the Locator is associated with a container.
 - **Input**: None; **Output**: boolean

 - **container()**: Return the container associated with the Locator.
 - **Input**: None; **Output**: boolean
Priority Queue with Locators

• It is easy to extend the sequence-based and heap-based implementations of a Priority Queue to support Locators.

• The Priority Queue ADT can be extended to implement the Locator ADT

• In the heap implementation of a priority queue, we store in the locator object a key-element pair and a reference to its position in the heap.

• All of the methods of the Locator ADT can then be implemented in $O(1)$ time.
A Java Implementation of a Locator

```java
public class LocItem extends Item implements Locator {
    private Container cont;
    private Position pos;

    LocItem (Object k, Object e, Position p, Container c) {
        super(k, e);
        pos = p;
        cont = c;
    }

    public boolean isContained() throws InvalidLocatorException {
        return cont != null;
    }

    public Container container() throws InvalidLocatorException {
        return cont;
    }

    protected Position position() {
        return pos;
    }

    protected void setPosition(Position p) {
        pos = p;
    }

    protected void setContainer(Container c) {
        cont = c;
    }
}
```
A Java Implementation of a Locator-Based Priority Queue

```java
public class SequenceLocPriorityQueue extends SequenceSimplePriorityQueue implements PriorityQueue {
    // priority queue with locators implemented with a sorted sequence
    public SequenceLocPriorityQueue (Comparator comp) {
        super(comp);
    }

    // auxiliary methods
    protected LocItem locRemove(Locator loc) {
        checkLocator(loc);
        seq.remove(((LocItem) loc).position());
        ((LocItem) loc).setContainer(null);
        return (LocItem) loc;
    }
}
```
protected Locator locInsert(LocItem locit) throws InvalidKeyException {
 Position p, curr;
 Object k = locit.key();
 if (!comp.isComparable(k))
 throw new InvalidKeyException("The key is not valid");
 else if (seq.isEmpty())
 p = seq.insertFirst(locit);
 else if (comp.isGreaterThan(k, extractKey(seq.last())))
 p = seq.insertAfter(seq.last(), locit);
 else {
 curr = seq.first();
 while (comp.isGreaterThan(k, extractKey(curr)))
 curr = seq.after(curr);
 p = seq.insertBefore(curr, locit);
 }
 locit.setPosition(p);
 locit.setContainer(this);
 return (Locator) locit;
}
Priority Queues

Locator-Based PQ (contd.)

```java
public void insert(Locator loc) throws InvalidKeyException {
    locInsert((LocItem) loc);
}

public Locator insert(Object k, Object e) throws InvalidKeyException {
    LocItem locit = new LocItem(k, e, null, null);
    return locInsert(locit);
}

public void insertItem (Object k, Object e) throws InvalidKeyException {
    insert(k, e);
}

public void remove(Locator loc) throws InvalidLocatorException {
    locRemove(loc);
}

public Object removeMinElement () throws EmptyContainerException {
    Object toReturn = minElement();
    remove(min());
    return toReturn;
}
```