Combined Operators

- If given \(x(at-b) \) and if \(a \) is negative we can follow either of the two following procedures:

 - Time-Shift \(x(t) \) by \(b \) to obtain \(x(t-b) \) and time scale the shifted signal \(x(t-b) \) by \(a \) to get \(x(at-b) \)

 - Time-scale \(x(t) \) by \(a \) to obtain \(x(a \cdot (t-b/a)) \) and shift \(x(at) \) by \(b/a \) to obtain \(x(a(t-b/a)) = x(at-b) \)
Periodic Signals

- A periodic continuous –time signal has the property
 \[x(t) = x(t+T) \]
 - It is unchanged by the time shift of \(T \) and it is said that \(x(t) \) is periodic with a period \(T \)
 - Fundamental Period of \(x(t) \): smallest positive value of \(T \) for which
 \[x(t) = x(t+T) \]

- Discrete-time periodic signals are defined similarly as
 \[x[n] = x[n+N] \]
Even and Odd Signals

- A signal $x(t)$ or $x[n]$ is referred to as an Even signal if it is equal to its time-reversed counterpart.

 $$x(-t) = x(t) \text{ or } x[-n] = x[n]$$

- A Signal is called an Odd signal if

 $$x(-t) = -x(t) \text{ or } x[-n] = -x[n]$$
Even and Odd Signals

- Any signal can be broken down into a sum of two signals, even and odd:

\[Ev\{x(t)\} = \frac{1}{2}[x(t) + x(-t)] \]

\[Od\{x(t)\} = \frac{1}{2}[x(t) - x(-t)] \]