Agenda

- What is a 300mm Wafer Fab?
- Why are they Buildings for Advanced Technology?
- Contamination Issues
- Cleanroom Environment
- Current Technology
- Where we are going from here?
300mm Fabs

- Survey of 300mm Fab Technology
- 1000 operating fabs worldwide
 - very few are 300mm
- Operating data very scarce
- No Single design solution

What is a 300mm Wafer Fab?

- Latest generation fabrication plant for producing microchips
- 300mm diameter wafers (12 inch)
- Replaces previous 200mm generation

This presentation material can be used without the direct consent of the author.
What is a 300mm Wafer Fab?

- Huge production factories
 - up to 40,000 WSM
 - 500 process steps per wafer
- Cleanroom typically
 - 100,000–150,000 sq. ft.
 - 1,000,000 total sq. ft.
- High yield - >90%

They Are Big

This presentation material can be used without the direct consent of the author.
What is a 300mm Wafer Fab?

- New Fab today
 $2.0 - $2.5 billion
- 80%-85% is cost of tools
 balance is the building
- Recover these costs in 3 years

Wafer Fab Cost
($millions)

[Bar chart showing wafer fab cost over the years]

Not For The Faint of Heart

Design - Construction - Tools

Time to First Wafer Start

- 200 mm - 1995
- 300 mm - 2003

This presentation material can be used without the direct consent of the author.
If They’re so Expensive – Why Build Them?

- Annual Revenue = $Billions
- Wafer is 2.25 times bigger
- 2.5 times as many chips per wafer

Cost per wafer is higher but...
- Cost per Chip is substantially less
- Economy of Scale vs. 200mm

This presentation material can be used without the direct consent of the author.
Today’s Microelectronics are crossing the threshold into Nanoelectronics
- Currently at the 130nm technology node
- Next year will bring 90nm process
- 65nm node is being proven in labs
- 300mm wafers are the first generation to make this transition.

IBM Claims World’s Smallest Silicon Transistor
- Online staff -- Electronic News, 12/9/2002

IBM Corporation today said it has created a working 6nm silicon transistor, making it the smallest one of its type in existence.
Why Is This Important?

- The technology that is being applied to this generation of IC.
- How does this technology effect the cleanroom environment?

Cleanroom Specifications

- Filter ceiling – 100% coverage w/ gel seal grid
- Airflow – 60-90 fpm
- Temperature – 72 +/- 0.5 F critical areas
 - 72 +/- 2 F non-critical areas
- Humidity – 50% +/- 2%RH critical areas
 - 50% +/- 5%RH non-critical areas
- Pressurization – 0.05” WG wrt corridor
- Class 0.1 as-built condition
- Class 1 operating

This presentation material can be used without the direct consent of the author.
This presentation material can be used without the direct consent of the author.
Cleanroom Zone Isolation

- HVAC isolation between process zones

For Example:

<table>
<thead>
<tr>
<th>Photolithography</th>
<th>CVD / Diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP / Wet Etch</td>
<td>Exotic Metals</td>
</tr>
</tbody>
</table>

Support

Types of Contamination

- Temperature instability
- Humidity instability
- Vibration
- Static discharge
- EMI / RFI

We will focus on Airborne contamination

This presentation material can be used without the direct consent of the author.
Types of Contamination

- Particulates
- Bacteria
- Metallic Ions – sodium, potassium, chloride
- Airborne Molecular Contamination
 - Acid vapor
 - Water vapor
 - Hydrocarbons
 - Other gas

Effects of Contamination

- Yield reduction – killer particles
- Early device failure
 - Uncontrolled doping
 - Modified electrical properties
- Degradation of fabrication equipment
 - Stepper optics hazing

This presentation material can be used without the direct consent of the author.
Sources of Contamination

- Gases
- DI Water
- Chemicals
- Box Carriers & Wafers
- Production People
- Gloves & Garments
- Wipes

Measuring Contamination

- The goal is to build Cleanrooms to limit manufacturing defects and other impacts
- Standards define the cleanliness of the cleanroom
- In the Old Days, Things were simple

<table>
<thead>
<tr>
<th>Class Name</th>
<th>>0.5μm</th>
<th>5μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>10,000</td>
<td>10,000</td>
<td>65</td>
</tr>
<tr>
<td>100,000</td>
<td>100,000</td>
<td>700</td>
</tr>
</tbody>
</table>

Federal Standard 209B - 1976

This presentation material can be used without the direct consent of the author.
Measuring Contamination

Federal Standard 209E

<table>
<thead>
<tr>
<th>Class Name</th>
<th>0.1µm</th>
<th>0.2µm</th>
<th>0.3µm</th>
<th>0.5µm</th>
<th>5µm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Particles/Volume</td>
<td>Particles/Volume</td>
<td>Particles/Volume</td>
<td>Particles/Volume</td>
<td>Particles/Volume</td>
</tr>
<tr>
<td>English</td>
<td>(ft2)</td>
<td>(ft2)</td>
<td>(ft2)</td>
<td>(ft2)</td>
<td>(ft2)</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>7.50</td>
<td>3.00</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>350</td>
<td>75.0</td>
<td>30.0</td>
<td>10.0</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,000</td>
<td>7.00</td>
</tr>
<tr>
<td>1,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10,000</td>
<td>70.0</td>
</tr>
<tr>
<td>10,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100,000</td>
<td>700.0</td>
</tr>
<tr>
<td>100,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100,000</td>
<td>700.0</td>
</tr>
</tbody>
</table>

This presentation material can be used without the direct consent of the author.
Measuring Contamination

Federal Standard 209E

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Class Limits</th>
<th>0.1µm</th>
<th>0.2µm</th>
<th>0.3µm</th>
<th>0.5µm</th>
<th>5µm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SI</td>
<td>English</td>
<td>SI</td>
<td>English</td>
<td>SI</td>
</tr>
<tr>
<td>M 1</td>
<td></td>
<td>350</td>
<td>9.91</td>
<td>75.7</td>
<td>2.14</td>
<td>30.9</td>
</tr>
<tr>
<td>M 1.5</td>
<td></td>
<td>1240</td>
<td>35</td>
<td>265</td>
<td>7.50</td>
<td>106</td>
</tr>
<tr>
<td>M 2</td>
<td></td>
<td>3500</td>
<td>99.1</td>
<td>757</td>
<td>21.4</td>
<td>309</td>
</tr>
<tr>
<td>M 2.5</td>
<td></td>
<td>12400</td>
<td>350</td>
<td>3650</td>
<td>75.0</td>
<td>1060</td>
</tr>
<tr>
<td>M 3</td>
<td></td>
<td>35000</td>
<td>991</td>
<td>7570</td>
<td>214</td>
<td>3090</td>
</tr>
<tr>
<td>M 3.5</td>
<td></td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M 4</td>
<td></td>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M 4.5</td>
<td></td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M 5</td>
<td></td>
<td>10000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M 5.5</td>
<td></td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M 6</td>
<td></td>
<td>10000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M 6.5</td>
<td></td>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M 7</td>
<td></td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

How Did We Get Here?

- **Cleanroom Classification**: Traditional cleanroom classification based on particle counts.
- **Technology Generation**: Evolution of technology with decreasing particle sizes and increasing data rates.

Cleanroom Evolution:
- 1980: 100 mm
- 1984: 100 mm
- 1987: 125 mm
- 1990: 150 mm
- 1993: 200 mm
- 1995: 200 mm
- 1998: 200 mm
- 2002: 300 mm

This presentation material can be used without the direct consent of the author.
Measuring Contamination

Federal Standard 209E

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Class Limits</th>
<th>0.1μm</th>
<th>0.2μm</th>
<th>0.3μm</th>
<th>0.5μm</th>
<th>5μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>English</td>
<td>(m²)</td>
<td>(ft²)</td>
<td>(m²)</td>
<td>(ft²)</td>
<td>(m²)</td>
</tr>
<tr>
<td>M 1</td>
<td>350</td>
<td>9.91</td>
<td>75.7</td>
<td>2.14</td>
<td>0.875</td>
<td>10.0</td>
</tr>
<tr>
<td>M 1.5</td>
<td>1240</td>
<td>35</td>
<td>265</td>
<td>7.50</td>
<td>3.00</td>
<td>35.3</td>
</tr>
<tr>
<td>M 2</td>
<td>3500</td>
<td>99.1</td>
<td>757</td>
<td>21.4</td>
<td>8.75</td>
<td>100</td>
</tr>
<tr>
<td>M 2.5</td>
<td>12,400</td>
<td>350</td>
<td>3650</td>
<td>75.0</td>
<td>106</td>
<td>30.0</td>
</tr>
<tr>
<td>M 3</td>
<td>35,000</td>
<td>991</td>
<td>7570</td>
<td>214</td>
<td>309</td>
<td>87.5</td>
</tr>
<tr>
<td>M 3.5</td>
<td>100</td>
<td>-</td>
<td>26,500</td>
<td>750</td>
<td>10,600</td>
<td>300</td>
</tr>
<tr>
<td>M 4</td>
<td>-</td>
<td>-</td>
<td>75,700</td>
<td>2140</td>
<td>30,900</td>
<td>875</td>
</tr>
<tr>
<td>M 4.5</td>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M 5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M 5.5</td>
<td>10,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M 6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M 6.5</td>
<td>100,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M 7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

International Standard

- Replaced Federal Standard 209E (Nov. 2001)
- Added classifications

<table>
<thead>
<tr>
<th>ISO Classification</th>
<th>Class Limits (particles / m³)</th>
<th>Fed 209 Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO Class 1</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>ISO Class 2</td>
<td>100</td>
<td>24</td>
</tr>
<tr>
<td>ISO Class 3</td>
<td>1000</td>
<td>237</td>
</tr>
<tr>
<td>ISO Class 4</td>
<td>10,000</td>
<td>2370</td>
</tr>
<tr>
<td>ISO Class 5</td>
<td>100,000</td>
<td>23,700</td>
</tr>
<tr>
<td>ISO Class 6</td>
<td>1,000,000</td>
<td>237,000</td>
</tr>
<tr>
<td>ISO Class 7</td>
<td>352,000</td>
<td>83,200</td>
</tr>
<tr>
<td>ISO Class 8</td>
<td>3,520,000</td>
<td>832,000</td>
</tr>
<tr>
<td>ISO Class 9</td>
<td>35,200,000</td>
<td>8,320,000</td>
</tr>
</tbody>
</table>

This presentation material can be used without the direct consent of the author.
What Has This Meant For The Cleanroom?

We’ve declared war on contamination

Fighting Contamination

- High efficiency PTFE filters (99.9995% or better)
- Non-outgassing, easily cleanable materials
- Chemically treated carbon filters for AMC
- Static dissipative floors
- Room pressurization
- Cleanroom Certification
- Cleanroom protocols & Gowning

This presentation material can be used without the direct consent of the author.
Sources of Contamination

Class 10 Cleanroom
- Environ 25%
- People 10%
- Process 25%
- Tools 40%

Class 1 Cleanroom
- Environ 10%
- People 5%
- Process 60%
- Tools 25%

Cleanroom Trends
- Contamination control
- Tighter temp control
- Process cooling water for heat removal
- AMC filters
- High efficiency dc motors on FFUs
- High efficiency vane axial fans
- Wafer Isolation Technology

This presentation material can be used without the direct consent of the author.
Isolation Technology

- Cleanroom
- Mini-environment

Year:
- 1989
- 1992
- 1995
- 1998
- 2001
- 2004
- 2007
- 2010

Class:
- Class 10
- Class 1
- Class 0.1
- Class 0.01

Wafer Isolation

- Enabling technology below 90nm
- Wafer is never exposed to the fab cleanroom environment
- Front Opening Unified Pod
- FOUP
- Next generation will offer inert gas purge

Asyst FOUP

This presentation material can be used without the direct consent of the author.
Wafer Isolation

- SMIF Load Port
- Interface between FOUP and Tool

Integrated Mini-environment

- Contain individual tools
- Fan Filter Units
- Better than class 1 environment

This presentation material can be used without the direct consent of the author.
Material Handling Systems

Wafer Isolation

This presentation material can be used without the direct consent of the author.
Cleanroom Trends

- Wafer Isolation helps resolve issues with:
 Particulate Contamination
 Temperature control
 Airborne Molecular Contamination

- If the wafer never sees the cleanroom –
 Why have one?

Where are we Going?

International Technology Roadmap for Semiconductors

<table>
<thead>
<tr>
<th>Technology Generation</th>
<th>Cleanroom Classification</th>
<th>Cleanroom Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 nm 1 Gb</td>
<td>ISO 5 = Class 100</td>
<td></td>
</tr>
<tr>
<td>90 nm 1 Gb</td>
<td>ISO 6 = Class 1000</td>
<td></td>
</tr>
<tr>
<td>80 nm 2 Gb</td>
<td>ISO 7 = Class 10,000</td>
<td></td>
</tr>
<tr>
<td>70 nm 2 Gb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 nm 4 Gb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 nm 8 Gb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 2003
- 2004
- 2005
- 2006
- 2007
- 2010

This presentation material can be used without the direct consent of the author.
Cleanroom Implications

- Extreme Wafer Isolation – Inert Environment
- Reduced classification
 - Reduced airflow
 - Reduced capital cost of building
 - Reduced gowning requirement
 - Reduced operating costs for cleanroom

- Heat Removal is a problem
 Limits airflow reduction

The Transition

- Expensive, Complex Cleanroom
- Expensive Complex Production Tool

This presentation material can be used without the direct consent of the author.
What’s Next?

Would You Believe 450 mm?

International Technology Roadmap for Semiconductors

<table>
<thead>
<tr>
<th>Technology Generation</th>
<th>Cleanroom Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 nm 1 Gb</td>
<td>ISO 5 2003</td>
</tr>
<tr>
<td>90 nm 1 Gb</td>
<td>ISO 6 2004</td>
</tr>
<tr>
<td>80 nm 2 Gb</td>
<td>ISO 6 2005</td>
</tr>
<tr>
<td>70 nm 2 Gb</td>
<td>ISO 6 2006</td>
</tr>
<tr>
<td>65 nm 4 Gb</td>
<td>ISO 6 2007</td>
</tr>
<tr>
<td>45 nm 8 Gb</td>
<td>ISO 7 2010</td>
</tr>
<tr>
<td>32 nm 32 Gb</td>
<td>ISO 8 2013</td>
</tr>
<tr>
<td>22 nm 64 Gb</td>
<td>ISO 9 2016</td>
</tr>
</tbody>
</table>

Cleanroom Evolution

- 300 mm
- 450 mm

This presentation material can be used without the direct consent of the author.
Thank You

This presentation material can be used without the direct consent of the author.